# **CS 267 Applications of Parallel Computers**

# Lecture 2: Memory Hierarchies and Optimizing Matrix Multiplication

#### **James Demmel**

http://www.cs.berkeley.edu/~demmel/cs267\_Spr99

CS267 L2 Memory Hierarchies.1

Demmel Sp 1999

# **Outline**

- ° Understanding Caches
- ° Optimizing Matrix Multiplication

CS267 L2 Memory Hierarchies.2

### **Idealized Uniprocessor Model**

- ° Processor can name bytes, words, etc. in its address space
  - · these represent integers, floats, pointers, structures, arrays, etc.
  - · exist in the program stack, static region, or heap
- ° Operations include
  - read and write (given an address/pointer)
  - · arithmetic and other logical operations
- ° Order specified by program
  - · read returns the most recently written data
  - compiler and architecture may reorder operations to optimize performance, as long as the programmer cannot see any reordering
- ° Cost
  - each operation has roughly the same cost (read, write, multiply, etc.)

CS267 L2 Memory Hierarchies.3

Demmel Sp 1999

#### **Uniprocessor Cost: Reality**

- Modern processors use a variety of techniques for performance
  - caches
    - small amount of fast memory where values are "cached" in hope of reusing recently used or nearby data
    - different memory ops can have very different costs
  - parallelism
    - superscalar processors have multiple "functional units" that can run in parallel
    - different orders, instruction mixes have different costs
  - pipelining
    - a form of parallelism, like an assembly line in a factory

## ° Why is this your problem?

 In theory, compilers understand all of this and can optimize your program; in practice they don't.

CS267 L2 Memory Hierarchies.4





# **Cache Basics**

- Cache hit: a memory access that is found in the cache -cheap
- ° Cache miss: a memory access that is not -- expensive, because we need to get the data elsewhere
- ° Consider a tiny cache (for illustration only)



- ° Cache line length: number of bytes loaded together in one entry
- Direct mapped: only one address (line) in a given range in cache
- ° Associative: 2 or more lines with different addresses exist

CS267 L2 Memory Hierarchies.7

Demmel Sp 1999

# **Experimental Study of Memory**

° Microbenchmark for memory system performance

time the following program for each size(A) and stride s
(repeat to obtain confidence and mitigate timer resolution)
for array A of size from 4KB to 8MB by 2x
for stride s from 8 Bytes (1 word) to size(A)/2 by 2x
for i from 0 to size by s
load A[i] from memory (8 Bytes)



CS267 L2 Memory Hierarchies.8

# **Observing a Memory Hierarchy**

Dec Alpha, 21064, 150 MHz clock



See www.cs.berkeley.edu/~yelick/arvindk/t3d-isca95.ps for details

CS267 L2 Memory Hierarchies.9

Demmel Sp 1999

#### Lessons

- The actual performance of a simple program can be a complicated function of the architecture
- Slight changes in the architecture or program change the performance significantly
- Since we want to write fast programs, we must take the architecture into account, even on uniprocessors
- Since the actual performance is so complicated, we need simple models to help us design efficient algorithms
- We will illustrate with a common technique for improving cache performance, called blocking

CS267 L2 Memory Hierarchies.10

# **Optimizing Matrix Addition for Caches**

- ° Dimension A(n,n), B(n,n), C(n,n)
- ° A, B, C stored by column (as in Fortran)
- ° Algorithm 1:
  - for i=1:n, for j=1:n, A(i,j) = B(i,j) + C(i,j)
- ° Algorithm 2:
  - for j=1:n, for i=1:n, A(i,j) = B(i,j) + C(i,j)
- ° What is "memory access pattern" for Algs 1 and 2?
- ° Which is faster?
- ° What if A, B, C stored by row (as in C)?

CS267 L2 Memory Hierarchies.11

Demmel Sp 1999

# **Using a Simpler Model of Memory to Optimize**

- ° Assume just 2 levels in the hierarchy, fast and slow
- All data initially in slow memory
  - m = number of memory elements (words) moved between fast and slow memory
  - tm = time per slow memory operation
  - f = number of arithmetic operations
  - tf = time per arithmetic operation < tm
  - q = f/m average number of flops per slow element access
- ° Minimum possible Time = f\*tf, when all data in fast memory
- $^{\circ}$  Actual Time = f\*tf + m\*tm = f\*tf\*(1 + (tm/tf)\*(1/q))
- ° Larger q means Time closer to minimum f\*tf

CS267 L2 Memory Hierarchies.12

# Simple example using memory model

° To see results of changing q, consider simple computation

$$s = 0$$

° Assume tf=1 Mflop/s on fast memory

for 
$$i = 1$$
, n

 $^{\circ}$  Assume moving data is tm = 10

° Assume h takes q flops

$$s = s + h(X[i])$$

° Assume array X is in slow memory

$$^{\circ}$$
 So m = n and f = q\*n

$$^{\circ}$$
 Mflop/s = f/t = q/(10 + q)

° As q increases, this approaches the "peak" speed of 1 Mflop/s

CS267 L2 Memory Hierarchies.13

Demmel Sp 1999

# **Simple Example (continued)**

### ° Algorithm 1

$$s1 = 0$$
;  $s2 = 0$   
for  $j = 1$  to n  
 $s1 = s1+h1(X(j))$   
 $s2 = s2 + h2(X(j))$ 

## ° Algorithm 2

$$s1 = 0$$
;  $s2 = 0$   
for  $j = 1$  to n  
 $s1 = s1 + h1(X(j))$   
for  $j = 1$  to n  
 $s2 = s2 + h2(X(j))$ 

° Which is faster?

CS267 L2 Memory Hierarchies.14

# **Optimizing Matrix Multiply for Caches**

- Several techniques for making this faster on modern processors
  - heavily studied
- ° Some optimizations done automatically by compiler, but can do much better
- In general, you should use optimized libraries (often supplied by vendor) for this and other very common linear algebra operations
  - BLAS = Basic Linear Algebra Subroutines
- Other algorithms you may want are not going to be supplied by vendor, so need to know these techniques

CS267 L2 Memory Hierarchies.15

Demmel Sp 1999

# Warm up: Matrix-vector multiplication $y = y + A^*x$

$$y(i) = y(i) + A(i,j)*x(j)$$

$$= \qquad + \qquad \stackrel{\mathsf{A}(\mathsf{i},:)}{\qquad} * \qquad \qquad \mathsf{x}(:)$$

CS267 L2 Memory Hierarchies.16

# Warm up: Matrix-vector multiplication y = y + A\*x

- $^{\circ}$  m = number of slow memory refs =  $3*n + n^2$
- $^{\circ}$  f = number of arithmetic operations =  $2*n^2$
- $^{\circ}$  q = f/m  $\sim$ = 2
- ° Matrix-vector multiplication limited by slow memory speed

CS267 L2 Memory Hierarchies.17

Demmel Sp 1999

# **Matrix Multiply C=C+A\*B**

for 
$$i = 1$$
 to  $n$   
for  $j = 1$  to  $n$   
for  $k = 1$  to  $n$   

$$C(i,j) = C(i,j) + A(i,k) * B(k,j)$$



CS267 L2 Memory Hierarchies.18

# Matrix Multiply C=C+A\*B(unblocked, or untiled)



CS267 L2 Memory Hierarchies.19

Demmel Sp 1999

# **Matrix Multiply (unblocked, or untiled)**

Number of slow memory references on unblocked matrix multiply

m = n^3 read each column of B n times

- + n^2 read each column of A once for each i
- + 2\*n^2 read and write each element of C once
- $= n^3 + 3*n^2$

So  $q = f/m = (2*n^3)/(n^3 + 3*n^2)$ 

~= 2 for large n, no improvement over matrix-vector mult



CS267 L2 Memory Hierarchies.20

# Matrix Multiply (blocked, or tiled)

Consider A,B,C to be N by N matrices of b by b subblocks where b=n/N is called the blocksize

for i = 1 to N

for j = 1 to N

{read block C(i,j) into fast memory}

for k = 1 to N

{read block A(i,k) into fast memory}

{read block B(k,j) into fast memory}

C(i,j) = C(i,j) + A(i,k) \* B(k,j) {do a matrix multiply on blocks}

{write block C(i,j) back to slow memory}



CS267 L2 Memory Hierarchies.21

Demmel Sp 1999

# **Matrix Multiply (blocked or tiled)**

Why is this algorithm correct?

Number of slow memory references on blocked matrix multiply

m = N\*n^2 read each block of B N^3 times (N^3 \* n/N \* n/N)

+ N\*n^2 read each block of A N^3 times

+ 2\*n^2 read and write each block of C once

= (2\*N + 2)\*n^2

So  $q = f/m = 2*n^3 / ((2*N + 2)*n^2)$ 

 $\sim$ = n/N = b for large n

So we can improve performance by increasing the blocksize b Can be much faster than matrix-vector multiplty (q=2)

Limit: All three blocks from A,B,C must fit in fast memory (cache), so we cannot make these blocks arbitrarily large:  $3*b^2 \le M$ , so  $q = b \le q$ 

Theorem (Hong, Kung, 1981): Any reorganization of this algorithm (that uses only associativity) is limited to q = O(sqrt(M))

CS267 L2 Memory Hierarchies.22

# More on BLAS (Basic Linear Algebra Subroutines)

- ° Industry standard interface(evolving)
- ° Vendors, others supply optimized implementations
- ° History
  - BLAS1 (1970s):
    - vector operations: dot product, saxpy (y= $\alpha$ \*x+y), etc
    - m=2\*n, f=2\*n, q ~1 or less
  - BLAS2 (mid 1980s)
    - matrix-vector operations: matrix vector multiply, etc
    - m=n^2, f=2\*n^2, q~2, less overhead
    - somewhat faster than BLAS1
  - BLAS3 (late 1980s)
    - matrix-matrix operations: matrix matrix multiply, etc
    - $m >= 4n^2$ , f=O(n^3), so q can possibly be as large as n, so BLAS3 is potentially much faster than BLAS2
- ° Good algorithms used BLAS3 when possible (LAPACK)
- ° www.netlib.org/blas, www.netlib.org/lapack

CS267 L2 Memory Hierarchies.23



# **Optimizing in practice**

- ° Tiling for registers
  - loop unrolling, use of named "register" variables
- ° Tiling for multiple levels of cache
- ° Exploiting fine-grained parallelism within the processor
  - · super scalar
  - pipelining
- ° Complicated compiler interactions
- ° Hard to do by hand (but you'll try)
- ° Automatic optimization an active research area
  - PHIPAC: www.icsi.berkeley.edu/~bilmes/phipac
  - www.cs.berkeley.edu/~iyer/asci\_slides.ps
  - · ATLAS: www.netlib.org/atlas/index.html

CS267 L2 Memory Hierarchies.25



# **Strassen's Matrix Multiply**

- The traditional algorithm (with or without tiling) has O(n^3) flops
- Strassen discovered an algorithm with asymptotically lower flops
  - O(n^2.81)
- ° Consider a 2x2 matrix multiply, normally 8 multiplies

```
Let M = [m11 \ m12] = [a11 \ a12] * [b11 \ b12]
[m21 \ m22] [a21 \ a22] [b21 \ b22]
Let p1 = (a12 - 122) * (b21 + b22)
p2 = (a11 + a22) * (b11 + b22)
p3 = (a11 - a21) * (b11 + b12)
p4 = (a11 + a12) * b22
Then m11 = p1 + p2 - p4 + p6
m12 = p4 + p5
m21 = p6 + p7
m22 = p2 - p3 + p5 - p7
Extends to nxn by divide&conquer
```

CS267 L2 Memory Hierarchies.27

Demmel Sp 1999

#### Strassen (continued)

```
T(n) = Cost of multiplying nxn
matrices
= 7*T(n/2) + 18*(n/2)^2
= O(n^log_2 7)
= O(n^2.81)
```

- ° Why does Hong/Kung theorem not apply?
- ° Available in several libraries
- ° Up to several time faster if n large enough (100s)
- ° Needs more memory than standard algorithm
- ° Can be less accurate because of roundoff error
- ° Current world's record is O(n^2.376..)

CS267 L2 Memory Hierarchies.28

# **Locality in Other Algorithms**

- ° The performance of any algorithm is limited by q
- In matrix multiply, we increase q by changing computation order
  - · increased temporal locality
- ° For other algorithms and data structures, even handtransformations are still an open problem
  - · sparse matrices (reordering, blocking)
  - trees (B-Trees are for the disk level of the hierarchy)
  - linked lists (some work done here)

CS267 L2 Memory Hierarchies.29

Demmel Sp 1999

# **Summary**

- Performance programming on uniprocessors requires
  - · understanding of memory system
    - levels, costs, sizes
  - understanding of fine-grained parallelism in processor to produce good instruction mix
- ° Blocking (tiling) is a basic approach that can be applied to many matrix algorithms
- Applies to uniprocessors and parallel processors
  - The technique works for any architecture, but choosing the blocksize b and other details depends on the architecture
- ° Similar techniques are possible on other data structures
- You will get to try this in Assignment 2 (see the class homepage)

CS267 L2 Memory Hierarchies.30