
1

University of Illinois at Urbana-Champaign

Compiler Optimizations

CS 498: Compiler Optimizations
Fall 2007

A note about the name of optimization

• It is a misnomer since there is no guarantee of
optimality.

• We could call the operation code improvement,
but this is not quite true either since compiler
transformations are not guaranteed to improve
the performance of the generated code.

2

Outline
Assignment Statement Optimizations
Loop Body Optimizations
Procedure Optimizations
Register allocation
Instruction Scheduling
Control Flow Optimizations
Cache Optimizations
Vectorization and Parallelization

Advanced Compiler Design Implementation. Steven S. Muchnick,
Morgan and Kaufmann Publishers, 1997. Chapters 12 - 19

Historical origins of compiler optimization

"It was our belief that if FORTRAN, during its first months, were to
translate any reasonable "scientific" source program into an object
program only half as fast as its hand coded counterpart, then
acceptance of our system would be in serious danger. This belief
caused us to regard the design of the translator as the real
challenge, not the simple task of designing the language."... "To this
day I believe that our emphasis on object program efficiency rather
than on language design was basically correct. I believe that has we
failed to produce efficient programs, the widespread use of
language like FORTRAN would have been seriously delayed.

John Backus
FORTRAN I, II, and III
Annals of the History of Computing
Vol. 1, No 1, July 1979

3

Compilers are complex systems

“Like most of the early hardware and software systems, Fortran was
late in delivery, and didn’t really work when it was delivered. At first
people thought it would never be done. Then when it was in field
test, with many bugs, and with some of the most important parts
unfinished, many thought it would never work. It gradually got to the
point where a program in Fortran had a reasonable expectancy of
compiling all the way through and maybe even running. This gradual
change of status from an experiment to a working system was true
of most compilers. It is stressed here in the case of Fortran only
because Fortran is now almost taken for granted, as it were built into
the computer hardware.”

Saul Rosen
Programming Languages and Systems
McGraw Hill 1967

Classifications of compiler optimizations

• By the scope
– Peephole optimizations. A local inspection of the

code to identify and modify inefficient sequence of
instructions.

– Intraprocedural. Transform the body of a procedure
or method using information from the procedure itself.

– Interprocedural. Uses information from several
procedures to transform the program. Because of
separate compilation this type of optimization is
infrequently applied to complete programs.

4

Classifications of compiler optimizations

• By the time of application
– Static. At compile-time

• Source-to-source
• Low-level optimizations

– Dynamic. At execution time.
• By the source of the information

– Code only
– Code plus user assertions
– Code plus profile information.

Optimizations included in a compiler

• The optimizations must be effective across the
broad range of programs typically encountered.

• Also important is the time it takes to apply the
optimization. A slow compiler is not desirable
(and for some transformations it can become
very slow).

• These factors limit the power of compilers. They
are part of the reason why manual optimizations
are needed.

5

Order and repetition of optimizations

• A possible order of optimizations appear in the figure below taken
from S. Muchnick’s book “Advanced compiler design
implementation”.

• Two quotes from that book:
– “One can easily invent examples to show that no order can be optimal

for all programs.”

– “It is easy to invent programs that will benefit from any number of
repetitions of a sequence of optimizing transformations. While such
examples can be constructed, it is important to note that they occur very
rarely in practice. It is usually sufficient to apply the transformations that
make up an optimizer once, or at most twice to get all or almost all the
benefit one is likely to derive from them.”

• The second phrase and the statements in the previous slide are the
reasons why compilers are implemented the way they are.

6

University of Illinois at Urbana-Champaign

I. Assignment statement
optimizations

1. Constant folding
2. Scalar replacement of aggregates

3. Algebraic simplification and Reassociation
 4. Common subexpression elimination

5. Copy propagation

7

Constant folding

• Constant-expressions evaluation or constant folding,
refers to the evaluation at compile time of expressions
whose operands are known to be constant.

• Example

 i = 320 * 200 * 32

 Most compilers will substitute the
 computed value at compile time

Constant folding and propagation

int a = 5
int b= a - 12/5;
int c;

c = b*4;
if (c > 10) {
 c = c -10;
}
return c * (60/a)

Example

int a = 5
int b= 3;
int c;

c = b*4;
if (c > 10) {
 c = c -10;
}
return c * 2;

int c;

c = 12;
if (12 > 10) {
 c = c -10;
}
return c * 2;

return 4;

Constant
Propagation

Constant
Propagation

Dead code
elimination

8

Constant folding and procedures

• Interprocedural constant propagation is particularly
important when procedures or macros are passed
constant parameters.

• Compilers do not do a perfect job at recognizing all
constant expressions as can be seen in the next three
examples from the c Sparc compiler (Workshop
Compiler, version 5.0).

• In fact, constant propagation is undecidable.

Constant folding: Example-I

#include <stdio.h>
int pp()
{
 int ia =1;
 int ib =2;
 int result;

 result = ia +ib;
 return result;
}

pp.c cc -O3 -S pp.c

• .global pp
 pp:
/* 000000 */ retl ! Result = %o0
/* 0x0004 */ or %g0,3,%o0
/* 0x0008 0 */ .type pp,2
/* 0x0008 */ .size pp,(.-pp)

9

Constant folding: Example-I

#include <stdio.h>
int pp()
{
 int ia =1;
 int ib =2;
 int result;

 result = ia +ib;
 return result;
}

pp.c cc -O3 -S pp.c

• .global pp
 pp:
/* 000000 */ retl ! Result = %o0
/* 0x0004 */ or %g0,3,%o0
/* 0x0008 0 */ .type pp,2
/* 0x0008 */ .size pp,(.-pp)

Constant folding: Example-II

int pp(int id){
 int ic, ia, ib;
 if (id == 1) {
 ia =1;
 ib =2; }
 else {
 ia =2;
 ib =1;}
 ic = ia + ib;
 return ic;
}

pp1.c cc -O3 -S pp1.c
! 3 !int pp(int id){
! 4 ! int ic, ia, ib;
! 5 ! if (id == 1) {
/* 000000 5 */ cmp %o0,1
/* 0x0004 */ bne .L77000003
/* 0x0008 */ or %g0,1,%g1
 .L77000002:
! 6 ! ia =1;
! 7 ! ib =2; }
/* 0x000c 7 */ or %g0,2,%g2
/* 0x0010 */ retl ! Result = %o0
/* 0x0014 */ add %g1,%g2,%o0
 .L77000003:
! 8 ! else {
! 9 ! ia =2;
/* 0x0018 9 */ or %g0,2,%g1
! 10 ! ib =1;}
/* 0x001c 10 */ or %g0,1,%g2
/* 0x0020 */ retl ! Result = %o0
/* 0x0024 */ add %g1,%g2,%o0
/* 0x0028 0 */ .type pp,2
/* 0x0028 */ .size pp,(.-pp)

10

Constant Folding: Example-III

int pp() {
 int ic, ia, ib;
 int id =1;
 if (id == 1) {
 ia =1;
 ib =2; }
 else {
 ia =2;
 ib =1;}
 ic = ia + ib;
 return ic;
}

pp2.c cc -O3 -S pp1.c

 .global pp
 pp:
/* 000000 */ retl ! Result = %o0
/* 0x0004 */ or %g0,3,%o0
/* 0x0008 0 */ .type pp,2
/* 0x0008 */ .size pp,(.-pp)

Scalar replacement of aggregates

• Replaces aggregates such as structures and
arrays with scalars.

• Scalar replacement facilitates other
optimizations such as register allocation,
constant and copy propagation.

11

Scalar replacement of aggregates

Scalar replacement of aggregates

12

• After dead code elimination and constant propagation,
the result is:

Scalar replacement of aggregates

main()
{
 printf (“%s \n”, “red”);
}

DO I = 1, N
DO J = 1, M

A(I) = A(I) + B(J)
ENDDO

ENDDO

• A(I) can be left in a register
throughout the inner loop

• Register allocation fails to
recognize this

DO I = 1, N
T = A(I)
DO J = 1, M

T = T + B(J)
ENDDO
A(I) = T

ENDDO

• All loads and stores to A in the
inner loop have been saved

• High chance of T being allocated
a register by the coloring
algorithm

Scalar replacement of aggregates

13

The effect of scalarization.
An example from the SPIRAL project

Formula Generator

SPL Compiler

Performance Evaluation

Search
Engine

DSP Transform

Target machine DSP Library

SPL Program

C/FORTRAN Programs

Scalarizarion is
carried out before
the program is fed to the
FORTRAN compiler

The SPIRAL System

Basic Optimizations
(FFT, N=25, SPARC, f77 –fast –O5)

14

Basic Optimizations
(FFT, N=25, PII, g77 –O6 –malign-double)

Basic Optimizations
(FFT, N=25, MIPS, f77 –O3)

15

Algebraic simplification and Reassociation

• Algebraic simplification uses algebraic properties of
operators or particular operand combinations to simplify
expressions.

• Reassociation refers to using associativity,
commutativity, and distributivity to divide an expressions
into parts that are constant, loop invariant and variable.

• For integers:
– Expressions simplification

• i +0 = 0 + i = i - 0 = i
• i ^ 2 = i * i (also strenght reduction)
• i*5 can be done by t := i shl 3; t=t-i

– Associativity and distributivity can be applied to improve parallelism (reduce the
height of expression trees).

• Algebraic simplifications for floating point operations are seldom applied.
– The reason is that floating point numbers do not have the same algebraic

properties as real numbers. For example, the in the code
eps:=1.0
while eps+1.0>1.0

oldeps := eps
eps:=0.5 * eps

– R eplacing eps+1.0 > 1.0 w ith eps >0.0 w ould change the result
significantly. The original form com putes the sm allest num ber such that

 1+ x = x w hile the optim ized form com putes the m axim al x such that x/2 rounds to
0.

Algebraic simplification and Reassociation

16

Tree-height reduction

The goal is to reduce height of expression tree to reduce execution time
in a parallel environment

+

a +

+

+

b

c

d e

+

a

+

+

+
b c

d e

Common subexpression elimination

• Transform the program so that the value of a (usually scalar)
expression is saved to avoid having to compute the same
expression later in the program.

• For example:
x = e^3+1
…
y= e^3

Is replaced (assuming that e is not reassigned in …) with
t=e^3
x = t+1
…
y=t

• There are local (to the basic block), global, and
interprocedural versions of cse.

17

Copy propagation

• Eliminates unnecessary copy operations.
• For example:

x = y
<other instructions>
t = x + 1

Is replaced (assuming that neither x nor y are reassigned in …) with
<other instructions>
t = y + 1

• Copy propagation is useful after common subexpression elimination. For example.
x = a+b
…
y = a+b

• Is replaced by CSE into the following code
t = a+b
x = t
…
z = x
y = a+b

• Here x=t can be eliminated by copy propagation.

University of Illinois at Urbana-Champaign

II. Loop body optimizations

6. Loop invariant code motion
7. Induction variable detection

8. Strength reduction

18

Loop invariant code motion

• Recognizes computations in loops that produce the
same value on every iteration of the loop and moves
them out of the loop.

• An important application is in the computation of
subscript expressions:

do i=1,n
do j=1,n

…a(j,i)….

• Here a(j,i) must be transformed into something like
a((i-1)*M+j-1) where (i-1)*M is a loop
invariant expression that could be computed outside the
j loop.

Example
.L95:
! 8 a[i][j]=0;
sethi%hi(.L_cseg0),%o0
ld[%o0+%lo(.L_cseg0)],%f2
sethi39,%o0
xor%o0,-68,%o0
add%fp,%o0,%o3
sethi39,%o0
xor%o0,-72,%o0
ld[%fp+%o0],%o2
sll%o2,4,%o1
sll%o2,7,%o0
add%o1,%o0,%o1
sll%o2,8,%o0
add%o1,%o0,%o0
add%o3,%o0,%o1
sethi39,%o0
xor%o0,-76,%o0
ld[%fp+%o0],%o0
sll%o0,2,%o0
st%f2,[%o1+%o0]
sethi39,%o0
xor%o0,-76,%o0
ld[%fp+%o0],%o0
mov%o0,%o2
sethi39,%o0
xor%o0,-76,%o0
ld[%fp+%o0],%o0
add%o0,1,%o1
sethi39,%o0
xor%o0,-76,%o0
cmp%o2,%g0
bne.L95
st%o1,[%fp+%o0]

a[i][j]=0;
...
.L900000109:
or%g0,%o0,%g2
add%o3,4,%o3
add%o0,1,%o0
cmp%g2,0
bne,a.L900000109
st%f0,[%o3] ! volatile

pp1()
{
float a[100][100];
int i,j;
for (i=1;i++;i<=50)
for (j=1;j++;j<=50)
a[i][j]=0;
}

unoptimized

optimized
cc -O3 -S pp1.c

19

Induction variable detection

• Induction variables are variables whose successive
values form an arithmetic progression over some part of
the program.

• Their identification can be used for several purposes:
– Strength reduction (see next).
– Elimination of redundant counters.
– Elimination of interactions between iterations to

enable parallelization.

Elimination of redundant counters

integer a(100)
t1=202
do i=1,100
 t1= t1-2
 a(i)=t1

20

Bernstein’s conditions and induction variables

• The following loop cannot be transform as is into parallel
form

 do i=1,n
 k=k+3
 A(k) = B(k)+1

 end do

• The reason is that induction variable k is both read and
written on all iterations. However, the collision can be
easily removed as follows

 do i=1,n
 A(3*i) = B(3*i) +1

 end do

• Notice that removing induction variables usually has the
opposite effect of strength reduction.

Strength reduction

• From Allen, Cocke, and Kennedy “Reduction of Operator Strength” in Muchnick and Jones
“Program Flow Analysis” AW 1981.

• In real compiler probably multiplication to addition is the only optimization performed.
• Candidates for strength reduction
1.Multiplication by a constant

loop
n=i*a
...
i=i+b

– after strength reduction
loop

n=t1
...
i=i+b
t1=t1+a*b

– after loop invariant removal
c = a * b
t1 = i*a
loop

n=t1
...
i=i+b
t1=t1+c

21

2.Multiplication by a constant plus a term
loop
n=i*a+c
...
i=i+b

– after strength reduction
loop
n=t1
...
i=i+b
t1=t1+a*b

– Notice that the update to t1 does not change by the addition of
the constant. However, the initialization assignment before the
loop should change.

Strength reduction

3.Two induction variables multiplied by a constant and added
loop

n=i*a+j*b
...
i=i+c
...
j=j+d

– after strength reduction
loop

n=t1
...
i=i+c
t1=t1+a*c
j=j+d
t1=t1+b*d

Strength reduction

22

4.Multiplication of one induction variable by another
loop

n=i*j
...
i=i+a
...
j=j+b

– After strength reduction of i*j
loop

n=t1
...

--------- t1=i*j
i=i+a

--------- new t1 should be (i+a)*j=t1+a*j
t1=t1+a*j
...
j=j+b

-------- new t1 should be i*(j+b)=t1+b*i
t1=t1+b*i

Strength reduction

• After strength reduction of a*j
loop

n=t1
...
i=i+a
t1=t1+t2
...
j=j+b
t1=t1+b*i
t2=t2+a*b

• b*i is handled similarly.

Strength reduction

23

5.Multiplication of an induction variable by itself
loop

n=i*i
...
i=i+a

– After strength reduction
loop

n=t1
...
i=i+a
-------- new t1 should be (i+a)*(i+a)=t1+2*a*i+a*a
t1=t1+2*a*i+a*a

– Now strength reduce 2*a*i+a*a
loop

n=t1
...
i=i+a
t1=t1+t2

-------- new t2 should be 2*a*(i+a)+a*a=t2+2*a*a
t2=t2+2*a*a

Strength reduction

6. Integer division
loop

n=i/a
...
i=i+b

– After strength reduction
loop

n=t1
...
i=i+b
t2=t2+(b mod a)
if t2 >= a then

t1++
t2=t2-a

t1=t1+b/a

Strength reduction

24

7. Integer modulo function
loop

n=i mod a
...
i=i+b

– After strength reduction
loop

n=t1
...
i=i+b
t1=t1+(b mod a)
if t1 >= a then

t1 = t1 -a

Strength reduction

8. Exponentiation
loop

x=a^i

...

i=i+b

– After strength reduction
loop

x=t1

...

i=i+b

t1=t1*(a^b)

Strength reduction

25

9. Trigonometric functions
loop

y=sin(x)
...

x=x+Δx
– After strength reduction
loop

y=sin(x)
...

x=x+Δx
tsinx=tsinx*tcosΔx+tcosx*tsinΔx
tcosx=tsinx*tsinΔx+tcosx*tcosΔx

Strength reduction

Unnecessary bounds checking
elimination

• By propagating assertions it is possible to avoid unnecessary bound
checks

• For example, bound checks are not needed in:
real a(1000)
do i=1,100

… a(i)…
end do

• And they are not needed either in
if i > 1 and i < 1000 then

… a(i)…
end if

• A related transformation is predicting the maximum value subscripts
will take in a region to do pre-allocation for languages (like
MATLAB) where arrays grow dynamically.

26

University of Illinois at Urbana-Champaign

III. Procedure optimizations

10. Tail recursion elimination
11. Procedure integration

12. Leaf routine optimization

Tail call and tail recursion elimination

• A call from procedure f() to procedure g() is a tail call
if the only thing f() does, after g() returns to it, is itself
return.

• Converts tail recursive procedures into iterative form
(See example in next slide)

27

Tail recursion elimination

Procedure integration

• Inline the procedure.

• This gives the compiler more flexibility in the type of
optimizations it can apply.

• Can simplify the body of the routine using parameter
constant values.

• Procedure cloning can be used for this last purpose also.

• If done blindly, it can lead to long source files and
incredibly long compilation times

28

Leaf routine optimization

• A leaf routine is a procedure that is a leaf in the call
graph of a program, i.e., it does not call other
procedures.
– Need to determine a routine is a leaf routine
– Nead to determine how much storage (registers and stack, the

routine requires)

• Can save instructions to save registers

• Can save the code that creates and reclaims a stack
frame for the leaf routine is stack space is not necessary.

29

University of Illinois at Urbana-Champaign

IV. Register allocation

Register allocation

• Objective is to assign registers to scalar operands in
order to minimize the number of memory transfers.

• An NP-complete problem for general programs. So need
heuristics. Graph coloring-based algorithm has become
the standard.

• Register allocation algorithms will be discussed in more
detail later.

30

University of Illinois at Urbana-Champaign

V. Instruction Scheduling

Instruction scheduling

• Objective is to minimize execution time by reordering
executions.

• Scheduling is an NP-complete problem.

• More about instruction scheduling when we discuss
instruction-level parallelism.

31

32

University of Illinois at Urbana-Champaign

VI. Control-flow optimizations

13. Unreachable Code Elimination
14. Straightening

15. If Simplification
16. Loop Inversion

17. Unswitching
18. Dead Code Elimination

Unreachable code elimination

• Unreachable code is code that cannot be executed
regardless of the input.

• Eliminating it saves space.

• Unreacheable code elimination is different from dead
code elimination.
– Dead code is code that can be executed but has no

effect in the result of the computation being
performed.

33

Straightening

• It applies to pairs of basic blocks so that the first has no
successors other than the second and the second has
no predecessors other than the first.

 .
 .
a = b + c

b = c * 2
a = a+1
 c > 0

Y N

Straightening

34

If simplification

• Applies to conditional constructs one or both of
whose arms are empty

Loop inversion

• Transforms a while loop into a repeat loop.
– Repeat loops have only a conditional branch at the end.
– While loops have a conditional branch at the beginning and an

uncoditional branch at the end
– For the conversion the compiler needs to prove that the loop is

entered at least once.

35

Unswitching

• Moves loop-invariant conditional branches out
of loops

Dead code elimination

• Eliminates code that do not affect the
outcome of the program.

36

University of Illinois at Urbana-Champaign

VI. Cache optimizations

Cache Optimizations

• Usually required “deep” transformations to the program.
• Most studied are those transformations related to loops:

– Loop tiling (blocking)
– Loop fission/fusion
– Loop interchange

• Although these are well understood, they are seldom
implemented in real compilers

• Other transformations that have been studied include the
change of data structures to increase locality.

• More will be said about this when we discuss locality
optimizations.

37

University of Illinois at Urbana-Champaign

VII. Vectorization and
parallelization

Vectorization and Parallelization

• Transformations for vectorization and parallelization rely
on dependence analysis.

• Most compilers (try to) do some form of parallelization.
• Vectorization was crucial for the early supercomputers,

mainly because there was no notation for vector
expressions in Fortran 77 (the language of choice for
supercomputing in those days).

• Fortran 90 solved that problem, but most
supercomputers today are not vector machines and
Fortran is no longer the language of choice.

• Intel implemented a vectorizer to automatically take
advantage of their SSE devices.

38

How well compilers work?

• Evidence accumulated for many years show that
compilers today do not meet their original goal.

• Problems at all levels:
-- Detection of parallelism
-- Vectorization
-- Locality enhancement
-- Traditional compilation

• Results from our research group.

Automatic Detection of Parallelism

Alliant FX/80
See. R. Eigenmann, J. Hoeflinger, D. Padua On the Automatic Parallelization
of the Perfect Benchmarks. IEEE TPDS, Jan. 1998.

39

G. Ren, P. Wu, and D. Padua: An Empirical Study on the
Vectorization of Multimedia Applications for Multimedia
Extensions. IPDPS 2005

Vectorization

Locality Enhancement

See. K. Yotov, X. Li, G. Ren, M. Garzaran, D. Padua, K. Pingali, P. Stodghill.
Is Search Really Necessary to Generate High-Performance BLAS?
Proceedings of the IEEE. February 2005.

40

Scalar Optimizations

See. J. Xiong, J. Johnson, and D Padua. SPL: A Language and Compiler for DSP
Algorithms. PLDI 2001

Empirical Search to Compiler Switch
Selection

• Empirical search has been used to identify the best compiler
switches.

• Compilers have numerous switches. Here is a partial list of gcc
switches:

-fdefer-pop
-fdelayed-branch
-fguess-branch-probability
-fcprop-registers
-floop-optimize
-fif-conversion
-fif-conversion2
-ftree-ccp -ftree-dce
-ftree-dominator-opts
-ftree-dse
-ftree-ter -ftree-lrs
-fcaller-saves
-fpeephole2
-fschedule-insns

-ftree-sra -ftree-copyrename
-ftree-fre -ftree-ch
-fmerge-constants
-fthread-jumps
-fcrossjumping
-foptimize-sibling-calls
-fcse-follow-jumps
-fcse-skip-blocks
-fgcse
-fgcse-lm
-fexpensive-optimizations
-fstrength-reduce
-frerun-cse-after-loop
-frerun-loop-opt

-fschedule-insns2
-fsched-interblock
-fsched-spec
-fregmove
-fstrict-aliasing
-fdelete-null-pointer-checks
-freorder-blocks
-freorder-functions
-funit-at-a-time
-falign-functions
-falign-jumps
-falign-loops
-falign-labels
-ftree-vrp
-ftree-pre

41

Empirical Search to Compiler Switch
Selection

• These switches can be set by groups using -O1, -O2 (all the
previous switches) and, -O3 (all of the previous switches plus a few
others). See:http://gcc.gnu.org/onlinedocs/gcc-4.1.1/gcc/Optimize-
Options.html#Optimize-Options

• Most compilers can be controlled by numerous switches. Some are
not publicly known. See for example the Intel Compiler Black Belt
Guide to Undocumented Switches.

• For all compilers, documented or not, it is not clear which subset of
switches should be set to maximize performance.

•Two different projects have studied the problem of
searching for the best set of compiler switches. Both
focused on gcc. Since the number of combinations is
astronomical, these projects use heuristics.

• The following figures are from: M. Haneda, P.M.W.
Knijnenburg, H.A.G. Wijshoff. Automatic selection of
compiler options using non-parametric inferential
statistics. PACT'05.

Empirical Search to Compiler Switch
Selection

42

Empirical Search to Compiler Switch
Selection

Empirical Search to Compiler Switch
Selection

43

Empirical Search to Compiler Switch
Selection

• See also: Zhelong Pan and Rudolf Eigenmann, Fast and Effective
Orchestration of Compiler Optimizations for Automatic Performance
Tuning, The 4th Annual International Symposium on Code
Generation and Optimization (CGO),March 2006.

• L. Almagor, K.D. Cooper, A. Grosul, T.J. Harvey, S.W. Reeves,
D.Subramanian, L. Torczon, and T. Waterman "Finding Effective
Compilation Sequences." Proceedings of the 2004 Conference on
Languages, Compilers, and Tools for Embedded Systems (LCTES)
(June 2004): 231-230.

 and

• http://www.coyotegulch.com/products/acovea/index.html

Empirical Search to Compiler Switch
Selection

• Orchestration algorithms
– Batch Elimination (BE)

• Identify the optimizations with negative effects and turn them
off at once.

• Good when the optimizations do not interact with each other
• O(n)

44

Empirical Search to Compiler Switch
Selection

• Orchestration algorithms
– Iterative Elimination (IE)

•Take into account the
interaction of
optimizations

•Switches off the one
optimization with the
most negative effect
from the baseline.

•O(n*n)

Empirical Search to Compiler Switch
Selection

• Orchestration algorithms
– Combined Elimination (CE)

•Apply the idea of BE in
each iteration after
identifying the optimizations
with negative effects.

•O(n*n)

45

Empirical Search to Compiler Switch
Selection

Use train input set to tune optimization switches. Use ref input to
measure execution time.

Roughly
represents
the number
of
experimente
d versions.

Empirical Search to Compiler Switch
Selection

Roughly
represents
the number
of
experimente
d versions.

46

Empirical Search to Compiler Switch
Selection

Empirical Search to Compiler Switch
Selection

