

Customer
Training

Designing with an
ARM-based SoC

 A-MNL-HW-SoC-15-0-v2

http://www.altera.com/customertraining/ILT/P-CSTN-HW-SOC-15-0-v2.zip

DO NOT DISTRIBUTE

http://www.altera.com/customertraining/ILT/P-CSTN-HW-SOC-15-0-v2.zip

DO NOT DISTRIBUTE

Table of Contents

Designing with an ARM-based SoC

PAGES

SoC Overview 2

HPS Overview 10

Exercise 1: Instantiating an HPS Component 52

Hardware Design Flow 52

HPS Component Configuration 60

Software Handoff 77

Avalon/AXI overview 81

Exercise 2: Completing the HPS Qsys System 91

HPS Simulation 92

SoC FPGA Configuration and Booting 99

Hardware Debug 108

Conclusion 125

Exercise 3: Debugging an SoC 129

DO NOT DISTRIBUTE

DO NOT DISTRIBUTE

Designing with an ARM-based
System on a Chip

Objectives

2

Explain the components that make up the SoC
Create a Hard Processor System based Qsys system
Describe the hardware to software file handoff
Explain the Avalon® and AXI™ interface protocols
Simulating an HPS-based Qsys system
Debug an SoC with various Quartus® II tools

Designing with an ARM-based System on a Chip

A-MNL-HW-SOC-15-0-v2 1

DO NOT DISTRIBUTE

Agenda

3

System on a Chip (SoC) overview
Hard Processor System (HPS) overview
Hardware Design
 Hardware design flow
 Avalon/Advanced eXtensible Interface (AXI) protocols
 HPS configuration
 SoC system simulation
 SoC hardware system debug

Designing with an ARM-based
System on a Chip

SoC Overview

Designing with an ARM-based System on a Chip

A-MNL-HW-SOC-15-0-v2 2

DO NOT DISTRIBUTE

5

Innovation Leader Across the Board

CPLDs
Lowest Cost,
Lowest Power

PowerSoCs
High-efficiency

Power Management

FPGAs
Cost/Power Balance
SoC & Transceivers

Design
Software

Development
Kits

Embedded Soft and
Hard Processors

FPGAs
Mid-range FPGAs

SoC & Transceivers

R E S O U R C E S

FPGAs
Optimized for

High Bandwidth

Intellectual
Property (IP)

 Industrial

Computing

Enterprise

Register for Free Online Training!

Always available on all your devices!
Always free!

Designing with an ARM-based System on a Chip

A-MNL-HW-SOC-15-0-v2 3

DO NOT DISTRIBUTE

SoC

Hardware
programmable
Great flexibility
Good power efficiency

FPGA

µPµP ASICASIC

DSPDSP ASSPASSP

ARM Cortex-A9 processor
Dedicated DSP blocks
Application-Specific IP
Programmable Logic Fabric

Altera & Silicon Convergence

7

General processors

Software
programmable
Great flexibility
Poor power

efficiency
Few application

specific features

µPµP DSPDSP

Need for Efficiency »Need for Efficiency »

Application-specific

Hard-wired, not
programmable
Poor flexibility
Great power efficiency
Many contain embedded

processors

ASICASIC ASSPASSP

« Need for Flexibility« Need for Flexibility

8

Altera SoC: The Best of Both Worlds

SoC

Dual Core ARM Cortex-A9
MPCore Processor

Hard
Memory

Controller
Peripherals

ARM Processor System

ARM Cortex-A9 + Altera FPGA

Designing with an ARM-based System on a Chip

A-MNL-HW-SOC-15-0-v2 4

DO NOT DISTRIBUTE

Quick Summary

9

FPGA:
 Looks like an FPGA
 Works like an FPGA
 Standard FPGA development flow
 Standard FPGA development tools

Quartus II, Qsys, SignalTap™ II Logic Analyser, System Console, USB-
Blaster™, Programmer...

ARM® HPS:
 Looks like an ARM processor system
 Works like an ARM processor system
 Typical ARM processor development flow
 Typical ARM processor development tools

ARM Cortex®-A9 compiler/debugger, JTAG tools, program trace...

System-Level Benefits of SoC

10

Increased system performance
 Over 4,000 DMIPS for under 1.8W
 Up to 1,600 GMACS, 300 GFLOPS DSP
 >120 Gbps processor to FPGA interconnect
 Cache coherent hardware accelerators

Reduced power consumption
 28nm & 20nm process (processor+FPGA)
 Significant power savings vs. 2-chip solution

Reduced board size
 Up to 60% form factor reduction

Reduced system costs
 Lower component cost
 Reduction in PCB complexity and cost

 Less routing with fewer layers

HighLow LOCAL
PROCESSOR

LOCAL
PROCESSOR

Video
Processing

Video
Processing

SWITCHSWITCH

ILA

BRIDGE /
MAC

BRIDGE /
MAC

DDR
Memory

DDR
Memory

DDR
Memory

DDR
Memory

DDR
Memory

DDR
Memory

DDR
Memory

DDR
Memory

ILA

BEFORE

CPUCPU Video
Processing

Video
Processing

SWITCHSWITCHBRIDGE /
MAC

BRIDGE /
MAC

DDR
Memory

DDR
Memory

SoC

AFTER

DDR
Memory

DDR
Memory

Designing with an ARM-based System on a Chip

A-MNL-HW-SOC-15-0-v2 5

DO NOT DISTRIBUTE

SoC Device Portfolio*

Tailored to Address Diverse Requirements

*Stratix® 10 SoCs not discussed in this class
11

12

SoC Key Features

Key Features

Process 28nm Low Power (28LP) process 20nm process

Processor
Cache/coprocessors

Dual-core ARM Cortex-A9 MPCore processor
L1, L2 Cache, NEON, Double Precision Floating Point Unit (FPU), Accelerator coherency port

(ACP)

Processor Performance 925 Mhz 1.05 GHz 1.5 GHz

Memory controllers
support Up to DDR3 400 MHz Up to DDR3 533 MHz Up to DDR4 1333MHz

Logic Density 25-110KLE 350-460KLE 160-660KLE

Transceivers Up to 6 Gbps Up to 10 Gbps Up to 17 Gbps

Total Power
Consumption

2W to 5W
(Single core @ 300 MHz

commercial temp to dual core
@ 800 MHz industrial temp)

10W to 15W
(Single core @ 300 MHz

commercial temp to dual core
@ 800 MHz industrial temp)

Up to 40% lower power
compared to Arria V SoC

Designing with an ARM-based System on a Chip

A-MNL-HW-SOC-15-0-v2 6

DO NOT DISTRIBUTE

Other Features of SoC Devices

13

Processor
 Dual-core ARM® Cortex™-A9 MPCore™ processor

 NEON™ coprocessor

 Double-precision FPU

 32-KB L1 instruction and data caches per core

 512-KB shared L2 cache

 2.5 MIPS/MHz instruction efficiency

 ARMv7-A

FPGA Features
 8 input Adaptive Logic Modules (ALM)

 Variable precision DSP blocks

 Include hard floating-point on Arria® 10 devices

 M10K/M20K + MLAB memory blocks

 fPLLs

 Hard IP for PCI Express®

High-Bandwidth on-chip interfaces

PCIeMultiport DDR SDRAM
Controller

Multiport DDR SDRAM
Controller

Hard Processor System (HPS)

ARM Cortex-A9
NEON / FPU

L1 Cache

L2 Cache

USB
OTG

RAM

FPGA

Shared Multiport DDR
SDRAM Controller

JTAG
Debug /
Trace

ARM Cortex-A9
NEON / FPU

L1 Cache

SD /
SDIO/
MMC

I2C

CAN

GPIO

SPI

Hard IP for
PCIe®

Timers

HPS to
FPGA

FPGA
to HPS

FPGA
Config

UART

EMAC

QSPI
Flash

Control

NAND
Flash

Hard Multiport DDR
SDRAM Controller Transceivers

H
P

S
 I/O

s
F

P
G

A
 G

en
eral P

u
rp

o
se I/O

s

DMA

Architecture Matters

14

Preserve Independence (virtual
2-chip operation)
 Processor boot / FPGA configuration
 FPGA operates even with CPU reset
 Independent FPGA / CPU memories

Protect Memory When Shared
 CPU memory protected from FPGA IP

≡

Designing with an ARM-based System on a Chip

A-MNL-HW-SOC-15-0-v2 7

DO NOT DISTRIBUTE

SoC Device (Chip Planner)

15

SoC Development Boards

16

Cyclone® V SoC
Arria V SoC
Arria 10 SoC
DE1-SoC education board
Arrow SOCKit
Macnica Helio Board
EBV SoCrates
and many others

Designing with an ARM-based System on a Chip

A-MNL-HW-SOC-15-0-v2 8

DO NOT DISTRIBUTE

Cyclone V SoC Development Board Block Diagram

17

Parallel
Configuration

Flash

USB 2.0

USB-Blaster II Cable

CPLD

10/100
Ethernet PHY

10/100
Ethernet PHY

HSMC

PCIe Socket
(RP & EP)

DDR3 1GB
400 MHz ECC

10/100/1000
Ethernet PHY

QSPI Flash
256MB

SDCard

USB 2.0
OTG PHY
UART to

USB

CPLD

CAN

Power
Management
Measurement

SPI

RTC

PCIe Gen1
x4

HPS

DDR3 1GB
400MHz

FPGA

SMA
(or SDI)

Serial
Flash

XCVRs

Industrial
Ethernet
Protocol
Support

Mictor
Connector
(debug &

trace)

JTAGJTAG

MAC
Address
Storage

I2C

Linear Tech
A/D Connector

Hardware Development Perspective

18

Silicon properties
Soft IP
Lowest level SW

FPGA

Engineer

Silicon Device

IP Cores

Registers

Hardware Libs

Driver

BSP

OS

Middleware

Application

Board

Designer

Firmware

Hardware

Engineer

Designing with an ARM-based System on a Chip

A-MNL-HW-SOC-15-0-v2 9

DO NOT DISTRIBUTE

19

System Development Flow

Release Release
• Quartus II Programmer
• In-system Update • Flash Programmer

Simulate
•,ModelSim® tool, VCS, etc.
• AXI and Avalon bus

functional models (BFMs)

Debug

Debug

• SignalTap™ II logic analyzer
• System Console

• GNU, Lauterbach, DS-5
and ARM ecosystem

• Quartus II design software
• Qsys system integration tool
• Standard RTL flow
• Altera® and partner IP

• ARM Development Studio 5
• GNU toolchain
• OS/BSP: Linux, VxWorks
• Hardware Libraries
• Design Examples

Design Design
HW/SW
Handoff

FPGA Hardware Design Flow Software Design Flow

Software
Development

Designing with an ARM-based
System on a Chip

HPS Overview

Designing with an ARM-based System on a Chip

A-MNL-HW-SOC-15-0-v2 10

DO NOT DISTRIBUTE

HPS Overview Agenda

21

HPS features
System management
Interconnect
Memory and Memory Controllers
DMA Controller

HPS IP Features

22

Multi-Processor Unit (MPU) subsystem featuring dual ARM Cortex-A9
MPCore™ processor
SDRAM controller subsystem/interconnect*
General purpose direct memory access (DMA) controller
2 or 3* Ethernet media access controllers (EMACs)
NAND, Quad SPI, Secure Digital (SD) and MultiMediaCard (MMC)
flash controllers
2 USB 2.0 On-The-Go (OTG) controllers
2 Serial peripheral interface (SPI) master controllers
2 SPI slave controllers
4 or 5* Inter-integrated circuit (I2C) controllers
2 Controller area network (CAN) controllers**
2 UARTs
3 GPIO interfaces

**Cyclone® V SoCs only*Arria® 10 SoCs only

Designing with an ARM-based System on a Chip

A-MNL-HW-SOC-15-0-v2 11

DO NOT DISTRIBUTE

23

HPS Block Diagram

SDRAM
Controller
Subsytem

QSPI

MPU Subsystem
(mpu_clk)

L3 Main Switch

(l3_main_clk)

L2 Cache
512KB

L3 Master
Peripheral

Switch

(l3_mp_clk)

AXI
Master

AXI
Slave

FPGA2SDRAM

Multi-port AXI/Avalon-MM
Master

FPGA2HPS LWHPS2FPGA

FPGA

AXI-64

AXI-32AXI-32

AHB-32

AXI-32

Boot
ROM

FPGA
Manager

DMA

AXI-32

HPS2FPGA
Bridge

FPGA2HPS
Bridge

AXI-32 AXI-64

On-chip
RAM

AXI-64

Control
Block

AXI-64

UART
(2)

GPIO
(3)

CAN
(2)

I2C
(4)

Timer
(4)

Watchdog
(2)

L3 Slave Peripheral Switch

(l3_sp_clk)

AHB-32

AHB-32

AHB-32

AHB-32

STM

L3 Interconnect

AXI-32

System
Manager

Clock
Manager PLL

(3)

Reset
Manager

AXI-32

AXI-64

AXI-32

Scan
Manager

L4, APB-32

ARM Cortex-A9 MPCore

SCU

CPU1
ARM Cortex-A9

NEON/FPU
32KB I$
32KB D$

CPU0
ARM Cortex-A9

NEON/FPU
32KB I$
32KB D$

AXI-64

SPI
(4)

AXI-32/64/128AXI-32/64/128

f2s_fpga_clk s2f_fpga_clk f2s_sdram_clk[5:0]

mpu_l2_ram_clk

l3_main_clk

AXI-64

AXI-32

AXI-64

AXI-32

AXI
Slave

LWHPS2FPGA
Bridge

AXI-32

AXI-32

s2f_periph_fpga_clk
HPS2FPGA

AHB-32

Overview

24

Cortex-A9 MPU subsystem contains
 Cortex-A9 MPCore processor
 Level 2 cache
 Debugging module
 Accelerator coherency port (ACP) ID mapper

Allows memory coherency for other masters in system (DMA, L3 interconnect, FPGA
peripherals, Debug Access Port)

Cortex-A9 MPCore processor contains the following
 Dual Cortex-A9 processor cores
 Snoop control unit (SCU) with accelerator coherency port
 Generic interrupt controller (GIC)
 Global timer
 Private timers and watchdogs

Cortex-A9 processor core contains the following
 ARM Cortex-A9 core
 NEON™ Single Instruction Multiple Data (SIMD) engine with scalar Floating

Point Unit (FPU)
 Level 1 instruction and data caches
 Memory management unit (MMU)

Designing with an ARM-based System on a Chip

A-MNL-HW-SOC-15-0-v2 12

DO NOT DISTRIBUTE

25

Cortex-A9 MPU Compared

Nios® II
Soft Processor Microcontroller

Application Processor

Real-Time Control

64-bit Processor

Smartcard Security

P
er

fo
rm

an
ce

, F
un

ct
io

na
lit

y

Cortex –A9

HPS

FPGA

26

HPS Memory Views

EMAC
(xN)

USB
OTG
(2)

Flash
Control

Trace

Debug
Port

Scratch
RAM
64 KB

. . .
CPU0

ARM Cortex-A9
NEON/FPU

32 KB I$
32 KB D$

CPU1
ARM Cortex-A9

NEON/FPU
32 KB I$
32 KB D$

FPGA-to-SDRAM

Boot
ROM

FPGA
Config

DMA

Multi-port
DDR SDRAM
Controller/

Interconnect

L3
Interconnect

HPS-to-FPGA FPGA-to-HPS

SCU

A
C

P

L2 Cache
(512 KB)

Configuration
Control

ARM Cortex-A9MPCore

Low Speed Peripherals
Timers, GPIO, UART, SPI, I2C, CAN

MPU View

SDRAM
View

L3 View

Designing with an ARM-based System on a Chip

A-MNL-HW-SOC-15-0-v2 13

DO NOT DISTRIBUTE

27

HPS Address Maps

CV/AV Accelerator
Coherency Port (ACP*)

Window

*Arria 10 ACP can be accessed for the entire SDRAM window if transaction is cacheable
*Arria V/Cyclone V ACP maps to the lowest 1G MPU SDRAM view by default

HPS Overview Agenda

28

HPS features
System management
Interconnect
Memory and Memory Controllers
DMA Controller

Designing with an ARM-based System on a Chip

A-MNL-HW-SOC-15-0-v2 14

DO NOT DISTRIBUTE

29

System Management Components

FPGA
Config

HPS

FPGAFPGA

EMAC
(2)

USB
OTG
(2)

Flash
Contro

l

TMC
(Trace)

Debug
Port

Scratch
RAM
64 KB

. . .
CPU0

ARM Cortex-A9
NEON/FPU

32 KB I$
32 KB D$

CPU0
ARM Cortex-A9

NEON/FPU
32 KB I$
32 KB D$

CPU1
ARM Cortex-A9

NEON/FPU
32 KB I$
32 KB D$

CPU1
ARM Cortex-A9

NEON/FPU
32 KB I$
32 KB D$

FPGA-to-SDRAM

Boot
ROM

FPGA
Manager

DMA

Multi-port
DDR

SDRAM
Controller

Multi-port
DDR

SDRAM
Controller

L3
Interconnect

L3
Interconnect

HPS-to-FPGA FPGA-to-HPS

SCUSCU

A
C

P

L2 Cache
(512 KB)
L2 Cache
(512 KB)

Configuration
Control

ARM Cortex-A9MPCore

Low Speed Peripherals
Timers, GPIO, UART, SPI, I2C, CAN

Clock
Manager

Reset
Manager

System
Manager

Scan
Manager

Security
Manager

System Management

30

Clocks and clock manager
Resets and reset manager
FPGA manager
System manager
Scan manager
Security manager

Designing with an ARM-based System on a Chip

A-MNL-HW-SOC-15-0-v2 15

DO NOT DISTRIBUTE

Clock Manager Overview

31

Manages Clocks in the HPS
 Contains PLLs
 Clock Frequency
 Clock Muxing

Including sourcing clocks from the FPGA
 Clock Gating
 Controls sourcing of clocks to the FPGA

Control and Status Register Access
 Allows software control
 Hardware libraries support

Cyclone V/Arria V HPS Clock Manager Block Diagram

32

h2f_user*_clock

HPS_CLK1

HPS_CLK2

HPS_CLK1 Clock Group

Designing with an ARM-based System on a Chip

A-MNL-HW-SOC-15-0-v2 16

DO NOT DISTRIBUTE

Cyclone V & Arria V Clock Manager

33

Requires an external clock source
 HPS_CLK1 pin
 10-50 MHz
 Optional second source (HPS_CLK2 pin)

Drives 3 clock groups, each with a separate PLL
 Main PLL
 Peripheral PLL
 SDRAM PLL

Optional clocks to and from FPGA
 HPS-to-FPGA clocks 0/1/2, one from each PLL group
 FPGA-to-HPS peripheral PLL reference clock
 FPGA-to-HPS SDRAM PLL reference clock

Hardware managed clocks
 Main PLL C0, C1, and C2 are hardware-managed

All others are software-managed clocks

34

Cyclone V/Arria V: 3 HPS Clock Groups

HPS

FPGA

EMAC
(2)

USB
OTG
(2)

Flash
Control

TMC
(Trace)

Debug
Port

Scratch
RAM
64 KB

. . .
CPU0

ARM Cortex-A9
NEON/FPU

32 KB I$
32 KB D$

CPU1
ARM Cortex-A9

NEON/FPU
32 KB I$
32 KB D$

FPGA-to-SDRAM

Boot
ROM

FPGA
Manager

DMA

Multi-port
DDR

SDRAM
ControllerInterconnect

HPS-to-FPGA FPGA-to-HPS

SCU

A
C

P

L2 Cache
(512 KB)

Configuration
Control

ARM Cortex-A9MPCore

Low Speed Peripherals
Timers, GPIO, UART, SPI, I2C, CAN

Clock
Manager

Reset
Manager

System
Manager

Scan
Manager

Designing with an ARM-based System on a Chip

A-MNL-HW-SOC-15-0-v2 17

DO NOT DISTRIBUTE

Cyclone V/Arria V Main PLL

35

HPS_CLK1 input clock source pin
Generates clocks for
 MPU subsystem (C0)
 L3 & L4 interconnect (C1)
 Debug (C2)
 Quad SPI flash (C3)
 NAND & SD/MMC flash (C4)
 Configuration & HPS-to-FPGA user clock 0 (C5)

Main
PLL

C0
C1
C2
C3

C4

C5

mpu_base_clk

main_base_clk
dbg_base_clk

main_qspi_base_clk

main_nand_sdmmc_base_clk

cfg_h2f_user0_base_clk

Cyclone V/Arria V Peripheral PLL

36

Selectable Input sources
 HPS_CLK1 input clock pin
 HPS_CLK2 input clock pin
 FPGA-to-HPS peripheral reference clock from FPGA fabric

Generates clocks for
 EMAC (C0 & C1)
 Flash Controller (C2 & C3)
 Main PLL group L4 interconnect (C4)

USB
SPI
CAN
GPIO

 HPS-to-FPGA clock (C5) Peripheral
PLL

C0
C1
C2
C3

C4

C5

emac0_base_clk

emac1_base_clk
periph_qspi_base_clk

periph_nand_sdmmc_base_clk

periph_base_clk

h2f_user1_base_clk

Designing with an ARM-based System on a Chip

A-MNL-HW-SOC-15-0-v2 18

DO NOT DISTRIBUTE

Cyclone V/Arria V SDRAM PLL

37

Input sources
 HPS_CLK1 input clock pin
 HPS_CLK2 input clock pin
 FPGA-to-HPS SDRAM reference clock from FPGA fabric

Generates clocks for
 SDRAM Controller Subsystem (C0-C2)
 HPS-to-FPGA user clock 2 (C5)

Only HPS PLL with phase and delay control

SDRAM
PLL

C0

C1
C2
C3

C4

C5

ddr_dqs_base_clk

ddr_2x_dqs_base_clk
ddr_dq_base_clk

h2f_user2_base_clk

Cyclone V/Arria V Flash Controller Clocks

38

Input sources
 Main PLL
 Peripheral PLL
 FPGA Fabric

Generates clocks for
 QSPI Flash (Up to 108Mhz x4)
 NAND Flash (Up to 250Mhz)
 SD/MMC Flash (Up to 200Mhz)

Designing with an ARM-based System on a Chip

A-MNL-HW-SOC-15-0-v2 19

DO NOT DISTRIBUTE

Arria 10 Clock Manager

39

2 PLLs
3 Clock Groups
 MPU

Hardware-sequenced clocks for the Cortex-A9 MPU subsystem
 Network on chip (NoC)

Hardware-sequenced clocks for L3 interconnect, L4 peripheral bus, and debug
 Peripherals

Software-sequenced clocks for PLL-driven peripherals
 No SDRAM clock group as the SDRAM controller is located in the FPGA

4 possible clock source
 HPS_CLK1 pin
 FPGA Fabric PLL clock reference
 FPGA configuration high speed internal oscillator
 FPGA configuration low speed internal oscillator

40

Arria 10 Clock Manager Diagram

Designing with an ARM-based System on a Chip

A-MNL-HW-SOC-15-0-v2 20

DO NOT DISTRIBUTE

Arria 10 Clock Manager Features

41

Boot clock can be generated from 2 sources
 FPGA cb_intosc_hs_clk /2 (Secure)
 External HPS_CLK1 clock reference (non-secure)

Each clock output block
 Can be set to 2 modes with glitch-free external bypass multiplexer

Bypass
 Uses Boot clock set at reset

Not-bypass (Uses one of 5 sources)
 hps_clk1
 f2s_free_clk (FPGA fabric clock reference)
 cb_intosc_hs_div2_clk (FPGA control block clock divided by 2)
 PLL0
 PLL1

 Has clock gates controlled by either hardware or software

42

Arria 10 PLLs

Designing with an ARM-based System on a Chip

A-MNL-HW-SOC-15-0-v2 21

DO NOT DISTRIBUTE

Software Management of Clocks

43

Software sets clock manager using HW libraries
 Output clock dividers
 Clock selection / enable
 Interrupts (Wake up MPU, lose/gain PLL lock)
 Clock Sequencing (to prevent system lock-up)

Most clocks require
 SW manually gate off any clock affected by the change
 Wait for any PLL lock if required
 Gate the clocks back on

Clocks must be very carefully sequenced or system can
lock up
 Use HW libraries to prevent this from happening (discussed later)

HPS Entry/Exit of ‘Safe Mode’

44

Put clocks into known safe state on cold or warm reset
request from Reset Manager
 Uses HPS_CLK1
 Clock manager register settings, for reset PLL counter & dividers,

bypassed to default values
 Enables all clocks (turns clock gating off)
 Flash controller clock multiplexer selects output from peripheral PLL

Exit Safe Mode by resetting Safe Mode bit of CTRL
register
 Handled by the second stage bootloader stage (discussed later) during

normal boot up
 Otherwise, done by using the hardware libraries (discussed later)

Designing with an ARM-based System on a Chip

A-MNL-HW-SOC-15-0-v2 22

DO NOT DISTRIBUTE

System Management

45

Clocks and clock manager
Resets and reset manager
FPGA manager
System manager
Scan manager
Security manager

Reset Manager Overview

46

Generates module reset signals based on reset requests
from various sources
Clocked by HPS_CLK1 clock pin
Three separate reset domains
 HPS system
 JTAG port
 Debug system

Accepts reset requests from following
 Software writing module reset registers
 FPGA control block
 FPGA fabric
 External Reset pins

Implements Cold and Warm reset

Designing with an ARM-based System on a Chip

A-MNL-HW-SOC-15-0-v2 23

DO NOT DISTRIBUTE

Cold / Warm / Debug Resets

47

Cold Reset Warm Reset Debug Reset

Affects all reset domains
(JTAG, Debug, System)

Happens after HPS has
already been cold reset

Only affects debug reset
domain

Places hardware-
managed clocks into safe

mode

Used to recover system
from a non-responsive

condition
Places software

managed clocks into their
default states

Resets a subset of the
HPS

Asynchronously resets all
registers in the clock

manager

Debug & JTAG reset
domain unaffected

Resets SDRAM so
memory contents and

setup lost

SDRAM unaffected so
memory contents

preserved

Reset Manager Integration

48

Reset Sources
 Power-On-Reset voltage monitor

(cold reset)
 nPOR pin (cold reset)
 nRST pin (warm reset)
 Debug (Debug Reset)
 Watchdogs (SW control)
 FPGA

f2h_cold_rst_req_n
f2h_warm_rst_req_n
f2h_dbg_rst_req_n
h2f_cold_rst_n
h2f_rst_n (cold or warm)
load_csr (cold reset)

FPGA monitoring
 Reset from FPGA can occur only

if FPGA is configured

_n
_n
_n

Input
Pins

Designing with an ARM-based System on a Chip

A-MNL-HW-SOC-15-0-v2 24

DO NOT DISTRIBUTE

Warm Reset is Software Configurable

49

Warm Reset can be configured to wait if
 FPGA needs to finish outstanding transactions
 SDRAM not yet in self refresh mode
 Trace Module needs to Stall and or Finish outstanding transactions
 Scan Manager interfaces not quiescent (may generate clock glitches)

Source of last warm reset can be logged
 Warm reset log must be cleared by software

Arria 10 Reset Manager Additional Features

50

Handles anti-tamper reset
Power on Reset handled by Security Manager and FPGA
configuration subsystem
Additional RAM clear domain
 Clears the following RAM blocks on cold or warm

On-chip RAM
NAND read, write, and ECC RAMs
MPU RAMs

Designing with an ARM-based System on a Chip

A-MNL-HW-SOC-15-0-v2 25

DO NOT DISTRIBUTE

System Management

51

Clocks and clock manager
Resets and reset manager
FPGA manager
System manager
Scan manager
Security manager

FPGA Manager Overview

52

Manages and monitors the FPGA portion of the SoC
 Configure the FPGA fabric

Partial reconfiguration, encryption, decompression supported
MSEL pins needs to be set appropriately

 Monitor FPGA configuration and power status
INIT_DONE, CRC_ERR, PR_DONE, etc.
Software configurable interrupts to MPU

 Can reset the FPGA
 Drive/Receive 32 GPIOs from the FPGA
 Boot from FPGA handshake signals

Used for booting the HPS from the FPGA fabric
 Supported by the Hardware Libraries

Designing with an ARM-based System on a Chip

A-MNL-HW-SOC-15-0-v2 26

DO NOT DISTRIBUTE

53

FPGA Manager Block Diagram

Arria 10 FPGA Manager Additional Feature

54

Error Message Register (EMR) Interface
 Error message extraction in case of CRC errors in the FPGA

FPGA JTAG Hosting
 Allows HPS to take control of configuration subsystem or provide JTAG

functionality to the FPGA
 Does not take control of the JTAG I/O

Designing with an ARM-based System on a Chip

A-MNL-HW-SOC-15-0-v2 27

DO NOT DISTRIBUTE

HPS Configuring FPGA Fabric

55

System Management

56

Clocks and clock manager
Resets and reset manager
FPGA manager
System manager
Scan manager
Security manager

Designing with an ARM-based System on a Chip

A-MNL-HW-SOC-15-0-v2 28

DO NOT DISTRIBUTE

System Manager Overview

57

Contains memory-mapped control and status registers
Manage HPS I/O features
Enable/disable other HPS peripherals
Provide access to boot configuration information
Provide access to status signals in other HPS modules
Enable and controls ECC and parity in HPS modules
Provide registers to pass information between warm boots
Pause watchdog timers during debug mode

58

System Manager Block Diagram

Not available on Arria 10 devices

Designing with an ARM-based System on a Chip

A-MNL-HW-SOC-15-0-v2 29

DO NOT DISTRIBUTE

HPS System Manager I/O Features

59

Tri-states HPS-configurable I/O pins during configuration
(Freeze controller)
 Not on Arria 10 devices

Controls HPS peripheral I/O pin multiplexing
Enables/disables various HPS I/O peripherals interfaces
Enables/disables HPS-FPGA interfaces

System Manager – Managed Peripherals

60

EMACs
USB controllers
SD/MMC controller
NAND controller
SPI masters
Quad SPI controller
DMA controller
On-chip RAM
CAN controllers
Debug core
Reset manager

Designing with an ARM-based System on a Chip

A-MNL-HW-SOC-15-0-v2 30

DO NOT DISTRIBUTE

System Management

61

Clocks and clock manager
Resets and reset manager
FPGA manager
System manager
Scan manager
Security manager

Scan Manager Overview

62

Cyclone V and Arria V SoCs only
Configures and manages HPS I/O pins
 Configures I/O bank settings (voltage, drive, pull up, etc.)
 HPS I/O must be frozen by System Manager before configuration

Gives HPS access to FPGA JTAG
 Can perform any FPGA JTAG operation
 Disables external FPGA JTAG when it takes over

Contains ARM JTAG Access Port (JTAG-AP)
 Multiple scan chain JTAG master interfaces

One connects to FPGA JTAG (standard JTAG signals)
Four connect to HPS I/O banks

Designing with an ARM-based System on a Chip

A-MNL-HW-SOC-15-0-v2 31

DO NOT DISTRIBUTE

63

Scan Manager Block Diagram

Scan Manager

64

Drives serial scan-chains connected to:
 HPS configuration IOCSR chains

Configures HPS I/Os
SDRAM DDR PHY (DLL/OCT)

 FPGA JTAG
Allows HPS to monitor single event upsets (SEUs)

From cold reset will trigger freeze sequence
 All HPS I/O will be considered un-configured

IO Buffers are in tri-state
Weak pull-up enabled

 During Boot phase
On-chip boot code uses Scan Manager to configure boot device’s IOCSR
Initial software will use Scan Manager to configure I/Os
When configuration complete, the freeze manager will receive an indicator from
System Manager to unfreeze I/Os

Not involved in Design for Test (DFT) or boundary-scan testing

Designing with an ARM-based System on a Chip

A-MNL-HW-SOC-15-0-v2 32

DO NOT DISTRIBUTE

System Management

65

Clocks and clock manager
Resets and reset manager
FPGA manager
System manager
Scan manager
Security manager

Security Manager Overview

66

Available on Arria 10 SoCs
Centralized device security control
All top-level clocks and reset signals go through the
security manager for validation
Features
 Allows Secure Boot through authentication and/or decryption
 Anti-Tamper protection
 ARM TrustZone® Technology (firewall with security manager features)

Designing with an ARM-based System on a Chip

A-MNL-HW-SOC-15-0-v2 33

DO NOT DISTRIBUTE

Authentication and Encryption

67

When Secure Boot is enabled, the device only accepts
authenticated software
 BootROM authenticates and/or decrypts 2nd Stage Bootloader
 2nd Stage Bootloader authenticates and/or decrypts Secure Micro OS
 Through secure APIs, Micro OS lets applications in Standard OS establish

trusted services

Arria 10 SoCs support hierarchical public key infrastructure
Once authenticated the HPS software can configure the
FPGA with encrypted bitstream

Security Manager Components

68

CSS (Configuration Sub-System) interface
 Receives decrypted data from the CSS engine

Fuse interface
 Request and receive fuse data from the CSS block

Data stored in one-time programmable fuses on the device

Register interface
 Software read and/or writes to security state bits, status, errors, enable

interrupt or DMA interface

Anti-tamper – trigger memory clearing of all internal
memories

Designing with an ARM-based System on a Chip

A-MNL-HW-SOC-15-0-v2 34

DO NOT DISTRIBUTE

69

Security Manager Block Diagram

HPS Overview Agenda

70

HPS features
System management
Interconnect
Memory and Memory Controllers
DMA Controller

Designing with an ARM-based System on a Chip

A-MNL-HW-SOC-15-0-v2 35

DO NOT DISTRIBUTE

Interconnect Overview

71

Cyclone V/Arria V SoCs: ARM CoreLink™ Network
Interconnect (NIC-301)
Arria 10 SoC: Arteris FlexNoC™ Interconnect
Based on AMBA® AXI, AHB™, and APB™ protocols
Level 3 is Multi-layer, nonblocking architecture comprised of
three switches
 Main switch

64 bits of connectivity to AXI bridges, on-chip memories, SDRAM and FPGA
manager
Half the MPU main clock frequency

 Master peripheral switch
32 bits connecting memory mastering peripherals to main switch
Half the main switch clock frequency

 Slave peripheral switch
32 bits connecting L3, L4 slave interfaces for masters of main and master peripheral
switches
Operates at a much slower speed

Cyclone V/Arria V Interconnect Diagram

72

Designing with an ARM-based System on a Chip

A-MNL-HW-SOC-15-0-v2 36

DO NOT DISTRIBUTE

73

Arria 10 Interconnect Diagram

A
P

B
cs_p

l4_
clk

A
TB

cs_
at_clk

A
P

B
cs_p

l4_
clk

MPU Subsystem
mpu_clk

SS

ARM Cortex-A9 MPCore

SCU

CPU1

M
AXI

CPU0

A
C

P
S

M
AXI

A
X

I-6
4

m
p

u
_clk

A
X

I-6
4

m
p

u
_clk

L2 Cache

M
AXI

M
AXI

A
X

I-64
m

p
u

_l2
ram

clk

DDR
Scheduler

IA
AXI

IA
NSP/AXI

N
SP

/A
X

I
f2

s_sd
ram

_clk[0
]

OCP DDR

hmc_clk

F

F

F

ASYNC
Bridge

ASYNC
Bridge

Hmc_free_clk

PTM (x2)

CTI (x2)

CORESIGHT SYTEM

ATB
APBs
ync

A
TB

 (x2
)

cs_
at_clk

CLK
MPU_CLK

m
p

u
_

clk
m

p
u

_
l2ram

clk
m

p
u

_p
erip

h
clk

l3_main_clk

AHB-AP

M

S

A
H

B
-3

2
l4

_m
p

_
clk

Syste
m

 M
o

d
u

le

C
LK

M
an

age
r

S

R
ST

M
an

age
r

W
atch

d
o

g
(2

)
O

SC
1

Tim

e
r

(2
)

S

System

M
an

age
r

S

TA OCP
MMR

TA
A

valo
n

U
A

R
T

(2
) S

I2
C

(5
) S

SP

Tim
er

(2
) S

L4
_

SP
, A

P
B

-3
2

, l4
_

sp
_

clk

TA
APB

G
P

IO
 (3

)

S

F
Fw_l4_sys

IA
AHB

IA
AXI

TMC
(ETR)

A
X

I-3
2

l4
_m

ain
_

clk
FP

G
A

M

an
age

rS
S

TA
APB

TA
AHB

Q
SP

I
Flash

SS

TA
APB

L4
_A

H
B

, A
H

B
-3

2
, l4

_m
p

_clk

L4_main_clk

U
SB

 O
TG

(2

)S

USB0
OTG

MM

S

A
H

B
-3

2
l4

_m
p

_clk

IA
AHB

F
Fw_l4_per

SD
/M

M
C

S

L4
_M

P
, A

P
B

-3
2, l4_m

p
_clk

USB1
OTG

M

A
H

B
-3

2
l4

_m
p

_clk

IA
AHB

SD/MMC

M

A
H

B
-3

2
l4

_m
p

_clk

IA
AHB

EMAC

M

A
X

I-
32

L4
_m

p
_c

lk

IA
AHB

EMAC0

M

A
X

I-3
2

L4
_m

p
_

clk

IA
AXI

EMAC1

M

A
X

I-3
2

L4
_m

p
_clk

IA
AXI

EMAC2

M

A
X

I-3
2

l4
_m

p
_clk

IA
AXI

NAND

M

A
X

I-3
2

l4
_m

p
_clk

IA
AXI

D
M

A
SP

I Slave
(2

)S
S

S

L4
_M

A
IN

, A
P

B
-3

2
, l4

_m
ain

_clk SP
I M

aster
(2

)S

DMA

M

A
X

I-6
4

l4
_m

ain
_clk

IA
AXI

TA
APB

AXI-64
mpu_l2ramclk

IA
AXI

ASYNC
Bridge

A
X

I-6
4

m
p

u
_l2ram

clk

TA
AXI

ASYNC
Bridge

ASYNC
Bridge

F

TA
AXI

STMS

AXI-32, cs_at_clk

A
P

B
cs_p

l4
_clk

F ASYNC
Bridge

Boot
ROM

S

On-chip
RAM

S

TA A
X

I
TA A

X
I

AXI-32,
l3_main_clk

AXI-64,
l3_main_clk

F

LWHPS2FPGA Bridge

HPS2FPGA
Bridge

FPGA2HPS
Bridge

ASYNC
Bridge

N
A

N
D

S
S

EM
A

C
0

S

EM
A

C
1

S

EM
A

C
2

S

FPGA
CORE

FPGA
CORE

A
TI/A

R
I

A
TI/A

R
I

A
TI/A

R
I

TA O
C

P
M

M
R

L4
_EC

C
, O

C
P

 M
M

R
-3

2
, l4

_m
p

_clk

SD
/M

M
C

EC
CS

O
C

R
A

M
EC

CS

D
M

A
EC

CS

Q
SP

I
EC

CS

N
A

N
D

EC
CS

U
SB

EC
CS

EM
A

C
S

EC
CS

F
A

P
B

cs_
p

clk_l4

DAP

M

S

A
P

B
cs_

p
l4_

clk

Coresight
system

L4
_D

A
P

, A
P

B
-3

2
,

l4
_sys_clk

L4
_sys, O

C
P

 M
M

R
-3

2
, l4

_sys_clk

ASYNC
Bridge

F

ASYNC
Bridge

IA
AXI

Firewalls

Clock domain
crossing

Initiator/Target

Routers

Bus Type
Clock

Legend

S Master/Slave

Bus Type
Clock Privilege bu only

IA
NSP/AXI

N
SP

/A
X

I
f2

s_sd
ram

_clk[1
]

ASYNC
Bridge

IA
NSP/AXI

N
SP

/A
X

I
f2

s_sd
ram

_clk[2
]

ASYNC
Bridge

FPGA
CORE

F

Se
c

M
an

age
r

Arria 10 Interconnect Features

74

Security firewall support
 Configure secure or non-secure access per peripheral
 Configure privilege and user access for some of the peripherals
 Per transaction security

ECC

Designing with an ARM-based System on a Chip

A-MNL-HW-SOC-15-0-v2 37

DO NOT DISTRIBUTE

Level 3 Interconnect Up/Downsizing

75

Level 3 interconnect different width interfaces
 64-bit main switch
 32-bit master peripheral switch
 32-bit slave peripheral switch

Sizing logic used at boundaries
 Between L3 interconnect and module
 Between 32-bit and 64-bit sub switches

Sizing logic only packs cacheable accesses
Sizing logic attempts to minimize 64-bit traffic
 3264 bit: pack two 32-bit words into a single 64-bit word
 6432 bit: perform one 64-bit access and split into two 32-bit words

AXI Bridges Architecture

76

High Performance
Masters in FPGA

CSR Slaves
High performance to

FPGA slaves

Designing with an ARM-based System on a Chip

A-MNL-HW-SOC-15-0-v2 38

DO NOT DISTRIBUTE

Global Programmers View (GPV)

77

GPV exposes register set of the L3 interconnect to control
bridge properties and behavior
Only three masters can access the GPV
 MPU subsystem
 FPGA-to-HPS bridge
 Debug access port (DAP)

GPV registers are used to access the following
 Slave security
 Address remapping
 Arbitration priority
 Write tide mark (buffer fill level before issuing transaction to slave)

Some GPV accesses must be secure
 Slave security and address remapping require secure accesses

High Performance Paths

78

32/64-bit

Designing with an ARM-based System on a Chip

A-MNL-HW-SOC-15-0-v2 39

DO NOT DISTRIBUTE

HPS

FPGA

79

Example System Throughput

Low Speed Peripherals
Timers, GPIO, UART, SPI, I2C, CAN

EMAC
(2)

USB
OTG

Flash
Cntrl

TMC
(Trace)

Debug
Port

On-chip
RAM

. . .
CPU0

ARM Cortex-A9
NEON/FPU

32 KB I$
32 KB D$

CPU1
ARM Cortex-A9

NEON/FPU
32 KB I$
32 KB D$

FPGA to SDRAM

Boot
ROM

FPGA
Config

DMA

Multi-port
DDR

SDRAM
ControllerInterconnect

HPS to
FPGA

FPGA
to HPS

SCU

A
C

P

L2 Cache
(512 KB)

ARM Cortex-A9MP Core

64-bit RD
64-bit WR

102 Gbps
(800 MHz)

Configuration
Control

128-bit RD
128-bit WR

Arria V SOC
64 Gbps

(250 MHz)

Cyclone V SOC
51 Gbps

(200 MHz)

128-bit RD
128-bit WR

Arria V SOC
64 Gbps

(250 MHz)

Cyclone V SOC
51 Gbps

(200 MHz)

128-bit RD
128-bit WR
128-bit RD
128-bit WR
128-bit RD
128-bit WR

Arria V SOC
64 Gbps

(250 MHz)

Cyclone V SOC
51 Gbps

(200 MHz)

128-bit RD
128-bit WR

128-bit RD
128-bit WR

Arria V SOC
64 Gbps

(250 MHz)

Cyclone V SOC
51 Gbps

(200 MHz)

128-bit RD
128-bit WR
128-bit RD
128-bit WR

Arria V SOC
64 Gbps

(250 MHz)

Cyclone V SOC
51 Gbps

(200 MHz)

128-bit RD
128-bit WR

256-bit RD
256-bit WR

Arria V SOC
128 Gbps
(250 MHz)

Cyclone V SOC
102 Gbps
(200 MHz)

256-bit RD
256-bit WR

Arria V SOC
128 Gbps
(250 MHz)

Cyclone V SOC
102 Gbps
(200 MHz)

256-bit RD
256-bit WR
256-bit RD
256-bit WR

Arria V SOC
128 Gbps
(250 MHz)

Cyclone V SOC
102 Gbps
(200 MHz)

256-bit RD
256-bit WR

256-bit RD

Arria V SOC
(533 MHz)

Cyclone V SOC
(400 MHz)

256-bit RD

Arria V SOC
(533 MHz)

Cyclone V SOC
(400 MHz)

32-bit R/W256-bit RD

Arria V SOC
(533 MHz)

Cyclone V SOC
(400 MHz)

32-bit R/W

64-bit RD
64-bit WR

128-bit RD
128-bit WR

Arria V SOC
16 Gbps

(250 MHz)

Cyclone V SOC
12 Gbps

(200 MHz)

128-bit RD
128-bit WR

Arria V SOC
16 Gbps

(250 MHz)

Cyclone V SOC
12 Gbps

(200 MHz)

32-bit RD
32-bit WR
32-bit RD
32-bit WR
128-bit RD
128-bit WR

Arria V SOC
16 Gbps

(250 MHz)

Cyclone V SOC
12 Gbps

(200 MHz)

32-bit RD
32-bit WR

FPGA-to-HPS Bridge Drawbacks

80

Additional latency through the L3 interconnect
Access to HPS SDRAM interface is only 32-bit
 On Cyclone V and Arria V SoCs

Access to ACP is throughput limited
 Due to cache coherency logic

Access to secure slaves require FPGA master to support
security
 Built into the AXI protocol
 For Avalon masters, Qsys supports hard coded security scheme

Use direct FPGA-to-SDRAM interface instead of FPGA-to-
HPS bridge when cache coherency is not needed
 Minimize latency
 Improve throughput

Designing with an ARM-based System on a Chip

A-MNL-HW-SOC-15-0-v2 40

DO NOT DISTRIBUTE

Level 4 Peripheral Bus Interconnect

81

SDRAM
Subsystem

MPU Subsystem
mpu_clk

S

S
(G

P
V

)

S A
XI

TM
C

(T

ra
ce

)
M

U
S

B
O

TG
 (2

)
M S

A
H

B

M A
XI

M A
XI

S A
XI

M
AXI

S

M
AXI

S

M
AXI

M
AXI

L3 Main
Switch

l3_mp_clk

AHB-32, l3_sp_clk

M A
X

I

S

M
AXI

AXI-32
l3_mp_clk

E
M

AC
 (2

)
M

AXI-32
l4_mp_clk S A

XI

L3 Master
Peripheral

Switch

AHB-32
usb_mp_clk

AXI-32
dbg_at_clk

A
X

I-6
4

l3
_m

ai
n_

cl
k

Boot
ROM

S

FPGA
Manager

S

D
M

A

S

N
A

N
D

M S AX
IAXI-32

nand_x_clkS

HPS2FPGA
Bridge

FPGA2HPS
Bridge

On-chip
RAM

S

M A
X

I
M AX

I

S M

l3_main_clk

M

CLK
Manager

S
RST

Manager

S

S
P

I S
la

ve
(2

)S

UART
(2)

S
CAN
(2)

S
I2C
(4)

S
SP

Timer
(2)

S

Q
S

P
I

Fl
as

h

S

S
A

H
B

(G

PV
)

D
AP

M

S

AHB-32
dbg_clk

S
D

/M
M

C
MS AHB-32

l4_mp_clk S
A

H
B

M
APB

M
AHB

M
AHB

M
AXI

AXI-32, nand_x_clk

M
APB

M
APB

S

L3 Slave
Peripheral

Switch
l3_sp_clk

STMS

M A
XI

M
AXI

S
(GPV)

Watchdog
(2)

S

L4_OSC1, APB-32, osc1_clk

M
APB

M
APB

S

M
AXI

S

AXI-32, nand_x_clk

OSC1
Timer

(2)

S
Scan

Manager

S

Legend

M=Master S=Slave

Switch ConnectionBus Type
Clock

A
XI

-3
2

l3
_s

p_
cl

k

ARM Cortex-A9
MPCore

SCU

CPU1

M
AXI

CPU0

A
C

P
S

M
AXI

AXI-64
mpu_l2_ram_clk

A
XI

-6
4

m
pu

_c
lk

AX
I-6

4
m

pu
_c

lk

AXI-32
l4_mp_clk

AXI-64, l4_main_clk

L3 Interconnect
(NIC-301)

S

S
S

L
4_

M
A

IN
, A

P
B

-3
2,

 l4
_m

ai
n

_c
lk

SPI Master
(2)

S

L4_SPI_M, APB-32, spi_m_clk

A
C

P
 ID

 M
ap

pe
r

S

L2
Cache

A
XI

-6
4,

 m
pu

_l
2_

ra
m

_c
lk

L4_SP, APB-32, l4_sp_clk

S

AXI-64
mpu_l2_ram_clk

AXI-32, l3_main_clk

AXI-32, l3_main_clk

AXI-64, l3_main_clk

AXI-32, dbg_at_clk

A
X

I-6
4

l3
_m

ai
n_

cl
k

A
X

I-3
2

cf
g_

cl
k

AHB-32
l4_mp_clk

S
AXI

S

S

G
P

IO
 (3

)

S

L
4_

M
P

,
A

P
B

-3
2

,
l4

_m
p

_c
lk

AXI-64
mpu_l2_ram_clk

System
Manager

S

LWHPS2FP
GA Bridge

S

S MM

A
P

B
cs_

p
l4

_
clk

A
TB

cs_at_
clk

A
P

B
cs_

p
l4

_
clk

A
C

P
S

A
X

I-6
4

m
p

u
_clk

A
X

I-6
4

m
p

u
_clk

A
X

I-6
4

m
p

u
_l2

ram
clk

N
SP

/A
X

I
f2

s_
sd

ram
_

clk[0
]

A
TB

 (x2
)

cs_
at_

clk

m
p

u
_

clk
m

p
u

_
l2

ram
clk

m
p

u
_

p
e

rip
h

clk

A
H

B
-3

2
l4

_
m

p
_clk

Syste
m

 M
o

d
u

le

C
LK

M
an

age
r

S

R
ST

M
an

age
r

W
atch

d
o

g
(2

)
O

SC
1

Tim

e
r

(2
)

S

System

M
an

age
r

S

TA
A

valo
n

U
A

R
T

(2
) S

I2
C

(5
) S

SP

Tim
e

r
(2

) S

L4
_SP

, A
P

B
-3

2
, l4

_sp
_clk

G
P

IO
 (3

)

S

A
X

I-3
2

l4
_

m
ain

_
clk

FP
G

A

M
an

age
rS

S

Q
SP

I
Flash

SS

L4
_

A
H

B
, A

H
B

-3
2

, l4
_

m
p

_
clk

U
SB

 O
TG

(2

)S

A
H

B
-3

2
l4

_
m

p
_clk

SD
/M

M
C

S

L4
_

M
P

, A
P

B
-3

2
, l4

_m
p

_
clk

A
H

B
-3

2
l4

_
m

p
_

clk

A
H

B
-3

2
l4

_
m

p
_

clk A
X

I-
3

2
L4

_
m

p
_

cl
kA

X
I-3

2
L4

_
m

p
_clk

A
X

I-3
2

L4
_m

p
_

clk

A
X

I-3
2

l4
_

m
p

_
clk

A
X

I-3
2

l4
_

m
p

_
clk

D
M

A
SP

I Slave
(2

)S
S

S

L4
_

M
A

IN
, A

P
B

-3
2

, l4
_

m
ain

_
clk SP

I M
aster

(2
)S

A
X

I-6
4

l4
_

m
ain

_clk

A
X

I-6
4

m
p

u
_l2

ram
clk

S

A
P

B
cs_

p
l4

_clk

S
S

T
A

A
X

I
T

A
A

X
I

N
A

N
D

S
S

EM
A

C
0

S

EM
A

C
1

S

EM
A

C
2

S

A
TI/A

R
I

A
T

I/A
R

I

A
T

I/A
R

I

TA O
C

P
M

M
R

L4
_E

C
C

, O
C

P
 M

M
R

-3
2

, l4
_m

p
_clk

SD
/M

M
C

EC
CS

O
C

R
A

M
EC

CS

D
M

A
EC

CS

Q
SP

I
EC

CS

N
A

N
D

EC
CS

U
SB

EC
CS

EM
A

C
S

EC
CS

A
P

B
cs_

p
clk_

l4

A
P

B
cs_

p
l4

_
clk

L4
_D

A
P

, A
P

B
-32

,
l4

sys
clk

L4_sys, O
C

P
 M

M
R

-32, l4_sys_clk

N
SP

/A
X

I
f2

s_
sd

ram
_

clk[1
]

N
SP

/A
X

I
f2

s_
sd

ram
_

clk[2
]

Sec
M

an
age

r

Arria V and Cyclone V L4 Buses Arria 10 L4 Buses

Level 4 Peripheral Bus

82

Level 4 buses used for control and status access
 Configuring modules
 Enabling/clearing module interrupts
 Reading back module status

HPS contains a virtual level 4 bus
 5 physical APB buses connected to level 3 interconnect

7 for Arria 10 Devices

Each physical APB bus
 Operates on a unique clock domain (L3 handles clock crossing)
 Connects to multiple APB slave interfaces

Designing with an ARM-based System on a Chip

A-MNL-HW-SOC-15-0-v2 41

DO NOT DISTRIBUTE

HPS Overview Agenda

83

HPS features
System management
Interconnect
Memory and Memory Controllers
DMA Controller

On-Chip ROM Features

84

64 KB for Cyclone V and Arria V SoCs
 128 KB for Arria 10 SoCs

32-bit AXI interface
Accessed after warm or cold reset
 Stores initial bootloader
 Programmed by Altera

Designing with an ARM-based System on a Chip

A-MNL-HW-SOC-15-0-v2 42

DO NOT DISTRIBUTE

On-Chip RAM Features

85

64 KB (28nm SoCs) or 256 KB (Arria 10 SoCs)
 Used as initial bootloader scratch pad
 Runs 2nd stage bootloader and possibly user bootloader

64-bit AXI interface
ECC support
 Single bit correction
 Double bit detection

HPS DDR Memory Controller

86

One 64-bit AXI port for CPU
One 32-bit AXI port for L3
Available direct FPGA Ports
 Up to 6 for Cyclone V/Arria V SoC

Avalon and AXI
 Up to 3 for Arria 10

AXI only

Variable DRAM port width
 8-bit, 16-bit, 32-bit
 64-bit (Only Arria 10)

Optional 8-bit ECC
Up to 4GB of address map for DDR
Firewall and security support (Arria 10 SoC)

Designing with an ARM-based System on a Chip

A-MNL-HW-SOC-15-0-v2 43

DO NOT DISTRIBUTE

SDRAM Controller Features (1)

87

SDRAM device support
 Supports DDR2 (Cyclone V/Arria V only), DDR3, and LPDDR2(Cyclone

V/Arria V SoC only) SDRAM
 DDR4 and LPDDR3 support with Arria 10 SoC
 Up to 4GBit density parts and 2 chip selects

Error correcting code (ECC) support
 Hamming single-error correct and double-error detect reads
 ECC write-backs
 User notification of ECC errors

Operation ordering
 Command reordering (bank look ahead management)
 Data reordering (transaction reordering)

SDRAM Controller Features (2)

88

Port scheduling
 Absolute priority per port with eight levels
 Relative weight per port

Deficit weighted round robin scheduling for ports of same priority
 Priority and weight can be configured dynamically

Burst adaptation
 Burst alignment support for efficient unaligned burst access
 Burst adaptation support of chopping and merging for user burst bigger or

smaller than memory burst length

Memory device power management
 Support for self refresh command and partial array self refresh
 Power down support for user defined length or based on inactivity
 Deep power down support for LPDDR

Designing with an ARM-based System on a Chip

A-MNL-HW-SOC-15-0-v2 44

DO NOT DISTRIBUTE

SDRAM Controller Features (3)

89

AXI support
 AMBA AXI4 ordering rules supported

Memory protection
 If designed exclusively with AXI masters TrustZone® is supported

Exclusive support for shared memory accesses
 Tracking logic for up to 16 exclusive write operations

90

SDRAM Controller Diagram (Cyclone V/Arria V SoC)

64-Bit AXI

32-Bit AXI

MPU
Subsystem

L3
Interconnect

FPGA
Fabric

Multi
Port

Front
End

HPS SDRAM Controller

Memory Controller

FPGA-to-HPS
SDRAM
Interface

32 to 256 Bit

AXI or
Avalon-MM

Control & Status Registers

Register Slave Interface

L4 Peripheral Bus

External
Memory

HPS
I/O

Pins

DDR
PHY

AFISingle
Port

Controller

Designing with an ARM-based System on a Chip

A-MNL-HW-SOC-15-0-v2 45

DO NOT DISTRIBUTE

SDRAM Interconnect (Arria 10 SoCs)

91

Uses HMC (Hard Memory Controller) located in the FPGA
but through the SDRAM interconnect inside the HPS

HPS SDRAM Controller Configuration (28nm SoCs)

92

MPU subsystem must initialize interface
 Program I/O scan chain bits (voltage, delay chain settings)
 Program memory controller settings (width, timing)
 Perform calibration

Implications
 HPS 2nd stage bootloader software will be responsible for controller

initialization and calibration
 Quartus II software will provide appropriate settings and bit stream

For Arria 10 SoCs
 SDRAM Controller is done through FPGA peripheral configuration

Can be performed by software

Designing with an ARM-based System on a Chip

A-MNL-HW-SOC-15-0-v2 46

DO NOT DISTRIBUTE

Maximizing SDRAM Performance

93

When possible give FPGA masters direct access
 Using the FPGA-to-HPS bridge will limit throughput to 32-bit data
 Traffic through the FPGA-to-HPS bridge has to compete with other

masters
 FPGA SDRAM ports are wider and typically will be lower latency

Carefully determine MPFE weighting
 Absolute and relative weighting
 Ensure that a performance critical path has appropriate weighting
 Remember that FPGA masters are also competing for bandwidth and may

swamp the memory controller

Paths Into HPS SDRAM

94

32/64-bit

Designing with an ARM-based System on a Chip

A-MNL-HW-SOC-15-0-v2 47

DO NOT DISTRIBUTE

Considerations when Accessing HPS SDRAM from FPGA

95

HPS SDRAM FPGA ports are highly configurable
 AXI standards supported
 Avalon-MM* support can be configured to be read/write only

Use multiple FPGA ports instead of Qsys arbitration
 ex: 3 FPGA masters connected to HPS SDRAM
 Give each FPGA master an independent port
 Goal: use arbitration built into the controller as apposed to soft logic

Keep the FPGA masters and HPS SDRAM port on the
same clock domain
 SDRAM FPGA ports have built in clock crossing that is always enabled
 Using different clock domains will only increase memory latency

Only directly supported in Arria V and Cyclone V SoCs

Coherent Memory Sharing

96

Coherent memory
support for all masters
 FPGA and HPS

ACP ID Mapper
 Supports up to 6

concurrent L3 Masters
 Unlimited transactions

pending

High Bandwidth
 64-bit port running at ½

CPU clock

Designing with an ARM-based System on a Chip

A-MNL-HW-SOC-15-0-v2 48

DO NOT DISTRIBUTE

Memory Protection: ECC Support

97

DDR controller (16-bit,
32-bit, 64-bit)
L2 cache
On-chip RAM
QSPI, SD/MMC, NAND
DMA
USB, EMAC, CAN

HPS Overview Agenda

98

HPS features
System management
Interconnect
Memory and Memory Controllers
DMA Controller

Designing with an ARM-based System on a Chip

A-MNL-HW-SOC-15-0-v2 49

DO NOT DISTRIBUTE

Direct Memory Access Controller (DMAC) Overview

99

ARM Corelink™ Controller (DMA-330)
Microcode architecture for various transfer types
 Small instruction set providing flexibilty
 Memory to memory, memory to/from peripheral

Support for up to eight DMA channels
 Eight concurrently executed threads (AXI read/writes)
 One additional manager thread

Provides interrupt lines into the MPU subsystem
 For thread abort and events

Dedicated support for secure & non-secure accesses
 Dual slave interface

Contains multi-FIFO data buffer

DMAC Peripheral Flow Control Features

100

Peripherals can request transfers
 Simple request and acknowledge interfaces provided
 Most peripherals require two interfaces for receive and transmit
 Peripherals can request single or burst transfers

Flow control with 32 peripheral request interfaces
 4 for FPGA
 4 shared between FPGA and CAN controller (2 RX and 2 TX)
 8 for I2C controller (4 RX and 4 TX)
 8 for SPI masters and slaves (4 RX and 4 TX)
 2 for QSPI flash controller (RX and TX)
 1 for System Trace Macrocell
 4 for UART (2 RX and 2TX)
 1 for FPGA manager

Conditional code execution support based on peripheral
request type

Designing with an ARM-based System on a Chip

A-MNL-HW-SOC-15-0-v2 50

DO NOT DISTRIBUTE

References

101

For more information refer to the Cyclone V, Arria V, or
Arria 10 handbooks

https://www.altera.com/products/soc/overview.html

SoC Hardware Overview online trainings
 Microprocessor Unit

http://wl.altera.com/education/training/courses/OEMB5500
 Interconnect and Memory

http://wl.altera.com/education/training/courses/OEMB5500INT
 System Management, Debug, and General Purpose Peripherals

http://wl.altera.com/education/training/courses/OEMB5501
 Flash Controllers and Interface Protocols

http://wl.altera.com/education/training/courses/OEMB5501FLASH

External Memory Interface Handbook
External Memory Interfaces instructor led training

Quiz: Appropriate Bridge to Use

102

Scenario Which Bridge?

ARM MPU accessing FPGA SGDMA status register LW HPS-to-FPGA
ARM MPU writing to FPGA SGDMA descriptor memory HPS-to-FPGA
FPGA SGDMA master access to HPS memory FPGA-to-HPS
HPS writing a character to the FPGA JTAG UART LW HPS-to-FPGA
ARM MPU reading the FPGA System ID LW HPS-to-FPGA
HPS DMA transfer to FPGA SDRAM HPS-to-FPGA
ARM MPU executing code from FPGA SDRAM HPS-to-FPGA
Nios MPU writing to HPS SDRAM to share data with HPS FPGA-to-HPS

Depending on the cache coherency needs of the access, either the FPGA-
to-HPS bridge or the FPGA-to-SDRAM interface will be accessed.

Designing with an ARM-based System on a Chip

A-MNL-HW-SOC-15-0-v2 51

DO NOT DISTRIBUTE

Exercise 1

103

Configuring the HPS Component

Designing with an ARM-based
System on a Chip

Hardware Design

Designing with an ARM-based System on a Chip

A-MNL-HW-SOC-15-0-v2 52

DO NOT DISTRIBUTE

Hardware Design Agenda

105

Hardware design flow with Qsys
Configuring the HPS IP
Software handoff
Avalon/AXI overview
HPS simulation
HPS configuration and booting
SoC debug

Typical Design Flow

106

Create Quartus II
Project

(Select SoC Device)

Create Qsys
System

Add/Configure
HPS IP

Add IP to Qsys
System

Add Custom IP to
Qsys System

Interconnect
Components

Generate Qsys
System

Instantiate Qsys System
in Quartus II Project

Qsys Flow

Run Analysis &
Elaboration

Create I/O Assignments
(DDR,HPS Bank VCC)

Compile Quartus II
Project

SW Handoff HW Verification

Perform Functional
Simulation

Designing with an ARM-based System on a Chip

A-MNL-HW-SOC-15-0-v2 53

DO NOT DISTRIBUTE

Qsys Tool

107

GUI based tool for system design using IPs
Qsys advantages
 Simplifies complex system development
 Reduces time to market
 Raises the level of design abstraction
 Enables design re-use
 Scales easily to meet the needs of end product

Provides a standard platform:
 IP integration
 Custom IP authoring
 IP verification

Generates fast and scalable network-on-a-chip interconnect
 Allows standard interface interoperability
 Allows simultaneous multi-mastering

Traditional System Design

108

Components in system use different interfaces to communicate
(some standard, some non-standard)
Typical system requires significant engineering work to design
custom interface logic
Integrating design blocks and intellectual property (IP) is tedious and
error-prone

A
d

d
ress

D
ata

D
ata

Processor
(32-bit Master)

Slave 1
8-Bit

Slave 2
32-Bit

Slave 3
16-Bit

Slave 4
32-Bit

Slave 5
64-Bit

A
d

d
ress

Width Adapter Width Adapter Width Adapter Width Adapter Width Adapter

Arbiter

Address
Decoder

Bus Interface

PCI Express
(64-bit Master)

Bus Interface

Bus Interface Bus Interface Bus Interface Bus Interface Bus Interface

Interrupt
Controller

Designing with an ARM-based System on a Chip

A-MNL-HW-SOC-15-0-v2 54

DO NOT DISTRIBUTE

Automatic Interconnect Generation

109

Avoids error-prone integration
Saves development time with automatic logic & HDL generation
Enables you to focus on value-add blocks

Qsys improves productivity by automatically
generating the system interconnect logic

A
d

d
ress

D
ata

D
ata

Processor
(32-bit Master)

Slave 1
8-Bit

Slave 2
32-Bit

Slave 3
16-Bit

Slave 4
32-Bit

Slave 5
64-Bit

A
d

d
ress

Width Adapter Width Adapter Width Adapter Width Adapter Width Adapter

Arbiter

Address
Decoder

Bus Interface

PCI Express
(64-bit Master)

Bus Interface

Bus Interface Bus Interface Bus Interface Bus Interface Bus Interface

Interrupt
Controller

Qsys automatically
generates interconnect

110

Qsys Features

Avalon® Interfaces

AMBA® AXI3, AXI4

High-Performance Interconnect

Based on Network-on-a-Chip (NoC)
Architecture

Hierarchy Design Reuse

Design
System

Add to
Library

Package as IP

Real-Time System DebugIndustry-Standard Interfaces

®

Designing with an ARM-based System on a Chip

A-MNL-HW-SOC-15-0-v2 55

DO NOT DISTRIBUTE

Create Quartus II Project for SoC Device

111

Start with a New Quartus II Project

SoC Devices

112

Arria V SX
 6.5 Gbps transceivers

Arria V ST
 10.3125 Gbps transceivers

Arria 10 SX
 17.4 Gbps transceivers

Cyclone V SX
 3.125 Gbps transceivers

Cyclone V ST
 5 Gbps transceivers

Cyclone V SE
 No transceivers

Designing with an ARM-based System on a Chip

A-MNL-HW-SOC-15-0-v2 56

DO NOT DISTRIBUTE

Start a New System in Qsys

113

Start Qsys from the Quartus II software
 Menu, toolbar, or task pane

Qsys Component Library

114

Lists available IP and systems

Expand categories to
browse components

Type search string to filter the list

Double-click component or click
Add… button to add selected
component to system

Bring in custom IP

Designing with an ARM-based System on a Chip

A-MNL-HW-SOC-15-0-v2 57

DO NOT DISTRIBUTE

Connect the Components: Method 1

115

Click the open dot to make a connection

Connect the Components: Method 2

116

Right-click an interface to
make eligible connections

Designing with an ARM-based System on a Chip

A-MNL-HW-SOC-15-0-v2 58

DO NOT DISTRIBUTE

Instantiating HPS in Qsys

117

Back

HPS
System

FPGA

Create Complete FPGA System in Qsys

118

Clocks
Resets

JTAG
Bridge

Hardware
Accelerator

Address Span
Extender

h2f_axi_master

f2h_sdram

f2h_axi_slave

DDR

HPS I/O

Address Span
Extender

Nios II
Subsystem

w/
Vectored
Interrupt

Controller

SoC Qsys System

System
Control

h2f_lw_axi_masterUser I/O

Designing with an ARM-based System on a Chip

A-MNL-HW-SOC-15-0-v2 59

DO NOT DISTRIBUTE

Generate Completed Qsys System

119

Creates the Qsys interconnect
Generates source files for synthesis and/or simulation
Creates software handoff files

Hardware Design Agenda

120

Hardware design flow with Qsys
Configuring the HPS IP
Software handoff
Avalon/AXI overview
HPS simulation
HPS configuration and booting
SoC debug

Designing with an ARM-based System on a Chip

A-MNL-HW-SOC-15-0-v2 60

DO NOT DISTRIBUTE

Hard Processor System Component

121

General Options & Boot Control

122

Events
 Event in and out
 Wait for event condition
 Wait for interrupt condition

GPIO
Debug interfaces
Boot from FPGA

Designing with an ARM-based System on a Chip

A-MNL-HW-SOC-15-0-v2 61

DO NOT DISTRIBUTE

Events

123

Event in – sends event to both Cortex-A9 cores
Event out – either cores has executed single event
Wait for event condition (status bit)
Wait for interrupt condition (status bit)

General Purpose IO

124

Input bus 32 bits
Output bus 32 bits
Separate GPIO than shared HPS I/O pins
Controlled through FPGA Manager

Designing with an ARM-based System on a Chip

A-MNL-HW-SOC-15-0-v2 62

DO NOT DISTRIBUTE

Debug APB

125

Clock input and reset output
APB interface
 Address 31 indicates CPU or DAP access

System Trace Macrocell (discussed later)

126

Allows FPGA HW to insert messages into the trace
Event bus - 28 bits
Captures rising edge events

Designing with an ARM-based System on a Chip

A-MNL-HW-SOC-15-0-v2 63

DO NOT DISTRIBUTE

Cross Trigger Interface (discussed later)

127

Allows cross-trigger capability between FPGA hardware
and software debugger
Sends & receives triggers
 Trigger input/output buses
 Handshake interface

Boot from FPGA Signals

128

Provides inputs monitored by Boot ROM
 FPGA Boot device ready
 Allow boot from FPGA if selected boot device fails

FPGA system must be active and ready
 PLL driving boot device must be locked

Boot ROM will pass SW control to FPGA

Designing with an ARM-based System on a Chip

A-MNL-HW-SOC-15-0-v2 64

DO NOT DISTRIBUTE

AXI Bridges

129

FPGA-to-HPS
 Access peripherals & memory
 4 GB space
 32, 64, or 128 bits wide

HPS-to-FPGA
 960 MB space
 32, 64, or 128 bits wide

Lightweight HPS-to-FPGA
 Lower performance (32 bits)

Latency sensitive
No bursting

 Accessing CSRs
 2 MB space

Support soft Avalon connections

130

FPGA-HPS Bridge Interfaces

FPGA

EMAC
(2)

USB
OTG
(2)

Flash
Control

TMC
(Trace)

Debug
Port

Scratch
RAM
64 KB

. . .

FPGA-to-SDRAM

Boot
ROM

FPGA
Manager

DMA

Multi-port
DDR

SDRAM
Controller

L3
Interconnect

HPS-to-FPGA FPGA-to-HPS

Configuration
Control

CPU0
ARM Cortex-

A9
NEON/FPU

32 KB I$
32 KB D$

CPU1
ARM Cortex-

A9
NEON/FPU

32 KB I$
32 KB D$

SCU

A
C

P

L2 Cache
(512 KB)

ARM Cortex-A9 MPU

Low Speed Peripherals
Timers, GPIO, UART, SPI, I2C, CAN

Clock
Manager

Reset
Manager

System
Manager

Scan
Manager

Designing with an ARM-based System on a Chip

A-MNL-HW-SOC-15-0-v2 65

DO NOT DISTRIBUTE

Accessing HPS Memory Space from FPGA

131

4 GB HPS memory map (FPGA to HPS Bridge)
Less capable FPGA masters need Address Span Extender
(Windowed Bridge)

FPGA-to-HPS SDRAM Interface

132

Cyclone V and Arria V SoCs
 AXI3 or Avalon-MM ports
 Supports up to 6 ports

Maximum of 3 AXI3 ports or
Maximum of 6 Avalon-MM ports

 Data widths: 32, 64, 128, 256

Arria 10 HPS supports up to 3 ports
 AXI protocol only
 32, 64, or 128 bit wide

Designing with an ARM-based System on a Chip

A-MNL-HW-SOC-15-0-v2 66

DO NOT DISTRIBUTE

Resets

133

Different reset domains
 Cold
 Warm
 Debug

HPS can drive resets to FPGA
FPGA can drive resets

DMA Control

134

Eight logical channels
 Four available exclusive for FPGA
 Four shared between CAN or FPGA

Becomes FPGA exclusive on parts without CAN

Request single or burst transfer

Designing with an ARM-based System on a Chip

A-MNL-HW-SOC-15-0-v2 67

DO NOT DISTRIBUTE

Interrupts

135

FPGA-to-HPS (64 interrupt inputs
to GIC)
HPS peripheral interrupt outputs to
FPGA

Generic Interrupt Controller (GIC) Overview

136

Up to 180 interrupt sources
 Shared by both Cortex-A9 processors
 64 FPGA interrupts, DMA, Peripherals, Parity/ECC, Debug

16 banked Software Generated Interrupts (SGIs) per A9 core
 Used for issuing events to other core

ex: waking up processor core from sleep
 Priority set by SGI receiver

16 banked private peripheral interrupts
 Watchdog timers, general-purpose timers

Programmable priority levels for each interrupt
 16 levels for non-secure
 16 levels for secure
 Two levels deep
 Priority mask will filter out lower priority interrupts
 Highest priority is 0

Designing with an ARM-based System on a Chip

A-MNL-HW-SOC-15-0-v2 68

DO NOT DISTRIBUTE

Additional Arria 10 Interface Options

137

Enable Anti-tamper signals
 Allows communication between FPGA anti-tamper logic and the HPS

security manager

Enable Boot selection from FPGA
 Allow boot selection (BSEL) tie-off from the FPGA instead of the BSEL

pins

Enable FPGA EMAC(1-3) Switch Interface
 Provides direct connectivity from FPGA soft logic to any of the HPS EMAC

peripherals, bypassing the L3 interconnect

HPS and FPGA IOs (Cyclone V/Arria V SoCs)

138

A portion of device
I/O are allocated to
the HPS peripherals

HPS peripherals
assigned to HPS I/O

HPS peripherals can
be routed to FPGA

FPGA logic can be
routed to HPS I/O

LVTTL
3.3V

I/O Bank

LVTTL
2.5V

I/O Bank

HPS
Local

I/O

HPS Core
(Processors & Peripherals)

HPS / FPGA Interface

H
P

S
 / FP

G
A Interface

S
S

TL 1.5 –
1.8V

I/O
 B

ank

FPGA I/O

FP
G

A I/O

LVTTL
1.8V

I/O Bank

Designing with an ARM-based System on a Chip

A-MNL-HW-SOC-15-0-v2 69

DO NOT DISTRIBUTE

Arria 10 HPS IOs

139

17 Dedicated HPS IO
 For Clk, Resets, Flash devices, I2C, UART, SPI
 Configured by software

48 Shared IOs for peripherals
 Configured as part of FPGA IO
 Shared with FPGA logic

Pins for 64bit DDR with ECC
 Configured as part of FPGA IO

Compared with Cyclone V/Arria V SoCs
 Where all HPS IOs are dedicated

Peripheral Pins Options

140

Enable peripheral interfaces
Choose peripheral modes
Select I/O set
 More peripherals than available

I/O
 GPIO pins shared with peripherals

For Arria V and Cyclone V SoCs

Designing with an ARM-based System on a Chip

A-MNL-HW-SOC-15-0-v2 70

DO NOT DISTRIBUTE

141

HPS I/O Pin Muxing Diagram For Arria V and Cyclone V SoCs

Ethernet

142

Two Ethernet cores
I/O Select
 Arria V SoC

EMAC0 one
EMAC1 two

 Cyclone V SoC – one for each EMAC core

Presently only RGMII support
Optionally select MDIO or I2C PHY management interfaces

For Arria V and Cyclone V SoCs

Designing with an ARM-based System on a Chip

A-MNL-HW-SOC-15-0-v2 71

DO NOT DISTRIBUTE

Other Peripheral Options

143

QSPI
 Two I/O Sets
 Choose 1, 2 or 4 slave selects (up to 4 devices)

SPI master
 Single or dual slave selects

UART
 Enable/Disable flow control

For Arria V and Cyclone V SoCs

Pin Usage & Conflicts

144

View pin mux usage

Enable GPIO

View conflicts

For Arria V and Cyclone V SoCs

Designing with an ARM-based System on a Chip

A-MNL-HW-SOC-15-0-v2 72

DO NOT DISTRIBUTE

HPS Pin Assignments

145

Qsys automatically assigns HPS pins
 pin mux settings transferred to the Quartus II project

Run hps_sdram_p0_pin_assignments.tcl
in Quartus to set up SDRAM I/O assignments
 Located in the <project>\<qsys system>\synthesis\submodules

directory
 Tcl file generated during Qsys system generation

Check Assignments in Quartus II pin planner
 Location
 Drive strength
 VCCIO for banks

For Arria V and Cyclone V SoCs

146

Arria 10 Pin Mux GUI For Arria 10SoCs

Enable
Peripherals
and Options

I/O Usage
displayed

Finer I/O selection
options available

under Advanced Pin
Placement tab

Designing with an ARM-based System on a Chip

A-MNL-HW-SOC-15-0-v2 73

DO NOT DISTRIBUTE

HPS Input Clocks Options

147

Specify HPS clock pin frequency
Drive FPGA clocks into HPS PLLs
 Peripherals
 SDRAM

Options transferred to 2nd stage bootloader

HPS Output Clocks Options

148

Specify clock mux options
Specify peripheral clock
frequencies
Enable HPS clocks into the
FPGA

Designing with an ARM-based System on a Chip

A-MNL-HW-SOC-15-0-v2 74

DO NOT DISTRIBUTE

Cyclone V/Arria V SDRAM Configuration GUI

149

Consistent with SDRAM Controller MegaWizard™ GUI
Supported memory devices
 DDR3
 DDR2
 LPDDR2

Configure
clock & initial
settings

For Arria V and Cyclone V SoCs

SDRAM Embedded Memory Interface

150

For Arria V and Cyclone V SoCs

Designing with an ARM-based System on a Chip

A-MNL-HW-SOC-15-0-v2 75

DO NOT DISTRIBUTE

Arria 10 SDRAM Parameterization

151

Must use Arria 10 External Memory Interfaces
 Separate Qsys component to be connected to the HPS

For Arria 10SoCs

Arria 10 SDRAM Connection

152

Enable conduit to the Arria 10 External Memory Interface
 Allows connection to the Arria 10 External Memory Interface for HPS

Make the conduit connection in the Qsys tool

For Arria 10SoCs

Designing with an ARM-based System on a Chip

A-MNL-HW-SOC-15-0-v2 76

DO NOT DISTRIBUTE

Arria 10 SDRAM Considerations

153

Unnecessary to run SDRAM assignment script as relevant
assignments are included in the .qip file
SDRAM Controller is part of the FPGA
 FPGA peripheral must be configured prior to software using the SDRAM

Arria 10 bootloader can be generated to provide FPGA
configuration support

Hardware Design Agenda

154

Hardware design flow with Qsys
Configuring the HPS IP
Software handoff
Avalon/AXI overview
HPS simulation
HPS configuration and booting
SoC debug

Designing with an ARM-based System on a Chip

A-MNL-HW-SOC-15-0-v2 77

DO NOT DISTRIBUTE

Hardware/Software Design Flow Overview

155

Software Flow

soc_system.h

Hardware Flow

.sopcinfo

.svd

Handoff

Device Tree
Generator

DS-5 Debugger

Second Stage
Bootloader
Generator Second

Stage
BootloaderHW Design

.sof

Altera
Complete

Design
Suite

Device Tree

System Header
File Generation

Qsys system info, component
info, SDRAM calibration files,

ID / timestamp, HPS IOCSR data

Generated Software Handoff Files

Created when Quartus project is compiled
<quartus project>/hps_isw_handoff/

Used to create the second stage bootloader
Information contained
 SDRAM parameters
 HPS modules and I/O usage
 Checksum
 For Cyclone V / Arria V SoC’s

Binaries of IOCSR, SDRAM sequencing source software

156

Designing with an ARM-based System on a Chip

A-MNL-HW-SOC-15-0-v2 78

DO NOT DISTRIBUTE

Additional Generated Files

Created when Qsys system is generated

File Description

<qsys_system_name>_<hps instance>_hps.svd
(located in the <system>\synthesis directory)

System View Description (SVD) file
• Allows visibility into the register maps of Qsys

peripherals from a debugging tool such as DS-5*

<QSYS_SYSTEM_NAME>.sopcinfo
(located in the same directory as the .qsys file)

XML file describes FPGA hardware system
1. Used to create a system header file used to

abstract away FPGA peripheral addresses
2. Used to generate device tree for Linux

157

SVD File for Custom Components

158

IP component designer can create .svd file and attach to
an interface in the <component>_hw.tcl file

Ability to pass variable into .svd file from component
instantiation through hw.tcl file

set_interface_property <slave interface> CMSIS_SVD_FILE <file path>

set_interface_property <slave interface> \
CMSIS_SVD_VARIABLES “<Variable> <Variable value>”

Designing with an ARM-based System on a Chip

A-MNL-HW-SOC-15-0-v2 79

DO NOT DISTRIBUTE

Example System View Description File

159

Create SVD file according to ARM Cortex Microcontroller
Software Interface Standard (CMSIS) XML schema
specification

Component Information

Register information

Register description

Value from component instantiation through hw.tcl

Visualization of SoC Peripherals

Register views of
FPGA peripherals
 Point DS-5 debugger to Qsys-

generated svd file

Allows for debug of
software drivers
 Self-documenting
 Grouped by peripheral,

register and bit-field

CMSIS SVD File

Peripheral register
descriptions

Designing with an ARM-based System on a Chip

A-MNL-HW-SOC-15-0-v2 80

DO NOT DISTRIBUTE

Hardware Design Agenda

161

Hardware design flow with Qsys
Configuring the HPS IP
Software handoff
Avalon/AXI overview
HPS simulation
HPS configuration and booting
SoC debug

Qsys - Supported Interfaces – Altera Avalon

162

Altera Avalon-MM
 Memory mapped
 Control plane
 Master initiates requests to

slave

Altera Avalon-ST
 Streaming
 Data plane
 Source interface sends data to

sink interface (point-to-point)

Designing with an ARM-based System on a Chip

A-MNL-HW-SOC-15-0-v2 81

DO NOT DISTRIBUTE

Qsys - Supported Interfaces – ARM AMBA

163

ARM AMBA AHB interface
 Memory mapped
 High bandwidth control plane
 Multiple bus masters
 Burst and split transactions

ARM AMBA APB interface
 Memory mapped
 Low bandwidth control plane
 Similar to AHB interface, with a less

complex signal list
ARM AMBA AXI interface
 Memory mapped
 Includes support for AXI-Lite and

AXI-Streaming interfaces
 Both control and data plane
 Burst and unaligned transactions

Advantages of Using Standard Interfaces

164

Ensure compatibility between IP blocks from different
design teams or vendors
 Any component supporting interface can be connected

Simplify design entry and team-based design
 Signal behavior defined by interface
 Improved understanding, simplified documentation
 No manual wiring or mapping of control, data, and status signals
 Fast system-level integration
 Easy system changes

Simplify interface verification
 Use verification infrastructure to verify against standard

Bus functional models, interface compliance assertions and monitors, functional
coverage

Designing with an ARM-based System on a Chip

A-MNL-HW-SOC-15-0-v2 82

DO NOT DISTRIBUTE

165

Standard Interface Example

Avalon-MM
Master

AXI Slave

Qsys Interconnect
(simplified)

AXI Master

Avalon-MM
Slave

Any master interface can communicate
with any slave interface

Avalon-MM Interfaces

166

Master interfaces
 Initiate read/write transfers to Qsys

interconnect targeting slaves in its
address space

Slave interfaces
 Respond to transfer requests from

Qsys interconnect
Qsys interconnect handles
 Address decoding
 Data width matching
 Arbitration
 Clock crossing
 Timing adaptation

All interfaces must be
associated with a clock and
reset

Example master/slave
connections

Q
sy

s
In

te
rc

o
n

n
ec

t

C
P

U
 /

D
M

A
M

as
te

r
In

te
rf

ac
e

S
la

ve
 In

te
rf

ac
eaddress

read_n

readdata

address

control

data

Designing with an ARM-based System on a Chip

A-MNL-HW-SOC-15-0-v2 83

DO NOT DISTRIBUTE

167

Basic Avalon-MM Master Interface Signals

Signal Type Width Direction Required Description

address 1-64 Output Y Byte address corresponding to slave for transfer request

waitrequest

waitrequest_n
1 Input Y

Forces master to stall transfer until deasserted (other
Avalon-MM signals must be held constant)

read

read_n
1 Output N Indicates master issuing read request

readdata 1-1024 Input N Data returned from read request

write

write_n
1 Output N Indicates master issuing write request

writedata 1-1024 Output N Data to be sent for write request

byteenable

byteenable_n
1, 2, 4, …,

128
Output N

Specifies valid byte lanes for readdata or writedata (width =
data width / 8)

168

Basic Avalon-MM Slave Interface Signals

Signal Type Width Direction Required Description

address 1-64 Input N Word address of slave for transfer request

waitrequest

waitrequest_n
1 Output N Allows slave to stall transfer until deasserted

read

read_n
1 Input N Indicates slave should respond to read request

readdata 1-1024 Output N Response data provided to the Qsys interconnect

write

write_n
1 Input N Indicates slave should respond to write request

writedata 1-1024 Input N Data from the Qsys interconnect for a write request

byteenable

byteenable_n
1, 2, 4, …

128
Input N

Specifies valid byte lanes for readdata or writedata (width =
data width / 8)

Designing with an ARM-based System on a Chip

A-MNL-HW-SOC-15-0-v2 84

DO NOT DISTRIBUTE

Avalon Interface Specification

169

Defines the entire Avalon
Interface standard
Provides reference information
on additional transfer types
 Use cases
 Waveform diagrams

www.altera.com/literature/manual/mnl_avalon_spec.pdf

Advanced eXtensible Interface (AXI) Overview

170

ARM standard has been licensed by Altera
 Altera supports AXI3 and AXI4 specifications
 HPS is AXI3 spec compliant

Suitable for high-bandwidth and low-latency transfers
Separate Read and Write channels
 3 Write Channels, 2 Read Channels

Separate Address/Control and Data phases
Identical handshake mechanisms for all channels
 VALID/READY handshake

Source generates the VALID
Destination generates the READY
Handshake can be

 VALID before READY
 READY before VALID
 VALID with READY

Designing with an ARM-based System on a Chip

A-MNL-HW-SOC-15-0-v2 85

DO NOT DISTRIBUTE

Additional AXI features

171

Transaction ID’s for out of order responses
AwCACHE & ArCACHE
 Define memory type (i.e. read, write, cacheable, bufferable)

AwPROT & ArPROT
 Indicates the privilege and security level of the transaction
 Indicates whether the transaction is a data access or an instruction

access

AxLock
 Allows atomic accesses to AXI slaves (i.e. locked, exclusive,

normal)
 Response signaling notifies master if can’t be accessed

Individual Channel Handshake Examples

172

READY active after VALID

READY active before VALID

READY active at the same time as VALID

Information Capture

Designing with an ARM-based System on a Chip

A-MNL-HW-SOC-15-0-v2 86

DO NOT DISTRIBUTE

AXI Write Transaction

173

Write Address Channel Write Data Channel Write Response Channel

AXI Read Transaction

174

Read Address Channel Read Data Channel

Designing with an ARM-based System on a Chip

A-MNL-HW-SOC-15-0-v2 87

DO NOT DISTRIBUTE

AXI Interface Specification

175

Defines the entire AXI Interface
standard
AXI3 and AXI4 interfaces
AXI specification available from
ARM

Qsys Packets

176

All memory mapped transactions automatically converted
to Qsys packets
The Qsys tool uses a wide packet format
 Contains complete transaction in a single clock cycle

Writes in 0 cycle
Reads with a round-trip latency of 1 cycle

 Project Settings assignment allows tradeoff between latency and
maximum frequency

Separate command and response network
 Increases concurrency

Command traffic and Response traffic don’t have to compete for
throughput
Networks tailored individually to system topology

Designing with an ARM-based System on a Chip

A-MNL-HW-SOC-15-0-v2 88

DO NOT DISTRIBUTE

NoC Architecture

177

Memory-mapped packet transactions and transport
 Each transfer/request encapsulated in packet and sent to slave
 Each response encapsulated in packet and sent back to master

Master
Network
Interface

Master
Network
Interface

Avalon-STMM MM

Master
Interface

Master
Interface

Avalon-ST
Network

(Response)

Avalon-ST
Network

(Command)

Slave
Network
Interface

Slave
Network
Interface

Slave
Interface

Slave
Interface

Transaction Layer Transport Layer Transaction Layer

178

Qsys Memory-Mapped Packet Format (1/2)

Packet Field Description

Address Byte address of lowest byte in packet

Size Describes the segment of the payload that contains valid data for a beat

Address Sideband
Up to 8 bit signals for rd/wr address channels; valid for each beat in a
packet

Cache AXI cache signals

Transaction (Exc) Indicates exclusive access (read, compressed read, write, posted, lock)

Transaction (Posted) Indicates non-posted writes (require response)

Data Write - data to be written; Read - data that has been read

Byte Enables Which bytes of data in packet are valid

Source ID Command - ID of the master; Response - ID of the slave

Dest ID Command - ID of the slave; Response - ID of the master

Response AXI response signals

Thread ID AXI transaction ID values

Note: Fields in yellow are for AXI interface support and are ignored or removed for Avalon interfaces

Designing with an ARM-based System on a Chip

A-MNL-HW-SOC-15-0-v2 89

DO NOT DISTRIBUTE

179

Qsys Memory-Mapped Packet Format (2/2)

Packet Field Description

Byte Count Number of remaining bytes in the transfer

Burst Wrap Defines the wrapping behavior during bursting

Protection
Access level protection
0 - normal access; 1 – privileged access

QoS
AXI4 std: 4 bit field carries QoS info from AXI master to slave
AXI3 std: 4’b0000 indicates not participating in QoS scheme
QoS bits are dropped by slaves that do not support QoS

Data sideband
On Write, signals map to WUSER register
On Read, signals map to RUSER register
On Write response, signals map to BUSER register

Note: See Qsys Interconnect chapter of the Quartus II Handbook for more details on the packet fields.

Which Protocol to Choose: Avalon or AXI?

180

No right answer….

Ability to mix and match protocols among interfaces

Reasoning Which Bus?

Desire for simpler interfaces Avalon
Working with existing Avalon interface-based systems Avalon
Have legacy AXI IP AXI
Require secure transactions AXI
Need the ability to lock or have exclusive access to
slaves (i.e. mutex): AXI*

*Avalon interface supports locked transactions, but does not support exclusive accesses

Designing with an ARM-based System on a Chip

A-MNL-HW-SOC-15-0-v2 90

DO NOT DISTRIBUTE

Test Your Knowledge

181

True or False, The HPS can be instantiated directly in HDL
without the Qsys tool
 False

Which if these is not a hardware to software handoff tool?
a) Device Tree Generator
b) Second Stage Bootloader Generator
c) Linux Application Generator
d) System Header File generator

True or False, Qsys tool will automatically handle HPS AXI
master to Avalon slave interface translations
 True

182

Exercise 2

Complete the HPS Qsys System

Designing with an ARM-based System on a Chip

A-MNL-HW-SOC-15-0-v2 91

DO NOT DISTRIBUTE

Hardware Design Agenda

183

Hardware design flow with Qsys
Configuring the HPS IP
Software handoff
Avalon/AXI overview
HPS simulation
HPS configuration and booting
SoC debug

HPS System Simulation Support

184

AXI Bus Functional Models (BFMs) provided
 Licensed through Mentor Graphics® Corporation
 Implemented in SystemVerilog

VHDL wrapper components provided
 Master BFM, Slave BFM, and Inline Monitor are available
 Use to test AXI components

Avalon BFMs
 Used to test any Avalon interface

Master, Slave, or Streaming
 Written in SystemVerilog with available VHDL wrapper

Allows rapid verification of your FPGA IP
 Instantiate appropriate BFM for each interface

Validate IP before integrating with system
 Access the BFMs through standard function calls in the BFM API

HPS component not simulatable

Designing with an ARM-based System on a Chip

A-MNL-HW-SOC-15-0-v2 92

DO NOT DISTRIBUTE

Simulation Flow

185

1. Create HPS system in Qsys
 Can also simulate individual Avalon/AXI components standalone

2. Generate simulation model or testbench system
3. Write top-level test program
4. Build and run simulation script

Slave Component Testing

186

Build Qsys system with RTL slave (DUT) components
interfaces exported or connected to BFMs
AXI/Avalon Master BFM generates transactions
Monitor BFM watches traffic and does checking

RTL Slave

User Test Program

Master BFM

Clock BFM

Reset BFM

Generated by Qsys

Monitor BFM

Designing with an ARM-based System on a Chip

A-MNL-HW-SOC-15-0-v2 93

DO NOT DISTRIBUTE

Master Component Testing

187

Qsys system with RTL master (DUT) components
interfaces exported or connected to BFMs
AXI/Avalon Slave BFM generates responses
Monitor BFM watches traffic and does checking

RTL Master

User Test Program

Slave BFM

Clock BFM

Reset BFM

Generated by Qsys

Monitor BFM

HPS System Testing

188

Completed HPS system in Qsys
 HPS component represented by appropriate BFMs

User Test Program

Qsys
System

Clock BFM

Reset BFM

Generated by
Qsys

Conduit BFMs

Designing with an ARM-based System on a Chip

A-MNL-HW-SOC-15-0-v2 94

DO NOT DISTRIBUTE

HPS Simulation Support - Interfaces

189

Each HPS interface will
be represented by an
interface BFM
Clock output interfaces
will be driven by Clock
Master BFMs
Pin-side interfaces will
be unconnected within
the HPS simulation
model
Applies to both
simulation model and
testbench generation

Generate Qsys System for Simulation

190

Testbench Generation
 Standard

For component testing
BFMs created for every
exported interface

 Simple
For system testing
Only clock and reset BFMs
created

Simulation Model
Generation
 Generates simulation model of

system, no BFMs added for
exported interfaces

Generate Testbench System…

Generate HDL…

Designing with an ARM-based System on a Chip

A-MNL-HW-SOC-15-0-v2 95

DO NOT DISTRIBUTE

Testbench Directory Structure for 28nm Devices

191

Source code

Generated Qsys
system including BFMs

ModelSim setup script

192

Testbench Directory Structure for Arria 10 Devices

System Source code

Component Source code
Simulator

Scripts

Generated Qsys
system including BFMs

Designing with an ARM-based System on a Chip

A-MNL-HW-SOC-15-0-v2 96

DO NOT DISTRIBUTE

Qsys Testbench System – HPS System

193

HPS System Under Test

Writing the Test – BFM API Overview

194

The BFM API is a System Verilog interface with VHDL
wrapper functions
 Application Programming Interface (API) contains tasks and functions
 Organizes transactions into commands and responses

Abstracts away signal level details

The tasks/functions are used to communicate between the
API and the underlying AXI implementation
 The tasks and functions often contain a handle to a transaction

Designing with an ARM-based System on a Chip

A-MNL-HW-SOC-15-0-v2 97

DO NOT DISTRIBUTE

195

Testbench Example

Import AXI BFM
package

Instantiate Qsys
testbench system

Setup values for
master transaction

Send transaction

Wait for transaction

Setup response

Send response

Using Conduit BFMs

196

Every signal on a conduit BFM gets its own set & get
function

Set value on “gp_in”
signal of BFM

Retrieve value
from “gp_in”

Set value on
“gp_out”

Designing with an ARM-based System on a Chip

A-MNL-HW-SOC-15-0-v2 98

DO NOT DISTRIBUTE

Run Simulation Script

197

Scripts for simulators created automatically by Qsys
 Supports tools from Mentor Graphics, Synopsys®, Cadence®, Aldec®

 For simulation model
<project_directory>/<Qsys design name>/simulation/<vendor>

 For simulation testbench
<project_directory>/<Qsys design name>/testbench/<vendor>

Sets up simulation variables
Creates and compiles device libraries and source files
Simulates the design

Learn More

198

Mentor Verification IP Altera Edition User Guide
 http://www.altera.com/literature/ug/mentor_vip_ae_usr.pdf

Quartus II handbook Qsys chapter
 http://www.altera.com/literature/hb/qts/quartusii_handbook.pdf

Instruction-led trainings
 Introduction to the Qsys System Integration Tool
 Advanced Qsys System Integration Methodologies

Free Altera Online trainings
 Introduction to Qsys
 Advanced System Design Using Qsys
 Custom IP Development Using Avalon and AXI Interfaces

Designing with an ARM-based System on a Chip

A-MNL-HW-SOC-15-0-v2 99

DO NOT DISTRIBUTE

Hardware Design Agenda

199

Hardware design flow with Qsys
Configuring the HPS IP
Software handoff
Avalon/AXI overview
HPS simulation
HPS configuration and booting
SoC debug

SoC Configurations & Boot Sequences

200

Independent FPGA configuration and HPS boot
FPGA configured then HPS boots through FPGA
HPS boots and configures the FPGA

Designing with an ARM-based System on a Chip

A-MNL-HW-SOC-15-0-v2 100

DO NOT DISTRIBUTE

System Boot Schemes – Independent

201

FPGA configured from standard non-HPS sources
 Configuration device, flash memory, etc

HPS obtains 2nd stage bootloader from boot source
 Flash memory

SOC Device

FPGA HPS

NAND
Flash

MMC
/SD

QSPI
/SPI

Boot
ROM

Config
Controller

(2) (3)

PCIe (1)

CPU

B
oo

t S
ou

rc
es

Passive
Serial

QSPI
/SPI

C
on

fig
ur

at
io

n
S

ou
rc

es

On-chip
RAM

Passive
Parallel

System Boot Schemes – HPS First

202

HPS boots first through a non-FPGA source
Software running on the HPS configures the FPGA
through the FPGA Manager
 FPGA image from flash memory or any communication interface

SOC Device

FPGA HPS

NAND
Flash

MMC
/SD

QSPI
/SPI

Boot
ROM

Config
Controller

CPU

B
oo

t S
ou

rc
es

C
on

fig
ur

at
io

n
S

ou
rc

es

On-chip
RAM

Designing with an ARM-based System on a Chip

A-MNL-HW-SOC-15-0-v2 101

DO NOT DISTRIBUTE

System Boot Schemes – FPGA First

203

FPGA configured from standard non-HPS sources
HPS boots from FPGA fabric
 Waits for various control signals (init_done and boot_from_fpga signal)
 Boot ROM launches software running across the HPS-to-FPGA bridge

2nd stage bootloader or other software can be in FPGA RAM or other sources

SOC Device

FPGA HPS

Boot
ROM

Config
Controller

PCIe

CPU

Passive
Serial

QSPI
/SPI

C
on

fig
ur

at
io

n
S

ou
rc

es

On-chip
RAM

Passive
Parallel

User Specified I/F or FPGA memoryBoot
Source

AXI

204

HPS Typical Boot Stages

Reset

Boot ROM

• Setup minimal configuration
• Load 2ndary bootloader from Flash into On-Chip memory

(skipped if booting from FPGA)
• Jumps to 2nd stage bootloader

2nd Stage
Bootloader

• Setup IOCSRs and pin muxing
• Setup clocks and PLLs
• Initializes and calibrates SDRAM
• Loads subsequent boot stage or OS from Flash into

SDRAM
• Jumps to subsequent stage
• Program FPGABootloader

• Application specific OS loader, if not included as part of
second stage bootloader

OS • Linux, VxWorks, Windows, OSE, etc
•Device drivers and BSP
• Root File System

Application
IDE and Application Debug
• Possible FPGA configuration from HPS

• Starts Running code at reset exception address
• BootROM is mapped to reset address

Designing with an ARM-based System on a Chip

A-MNL-HW-SOC-15-0-v2 102

DO NOT DISTRIBUTE

Boot Flow

Boot ROM

Power On /
Warm Reset

Software
Source

Software
Location

205

HPS Power On / Reset

After reset/power up
system runs Boot ROM
code on CPU0
CPU1 is held in reset
Boot ROM code hard
programmed as primary
bootloader
Boot ROM code uses
On-chip RAM space for
data storage

Boot ROM

On-Chip
RAM

Boot Flow

2nd Stage
Bootloader

Power On /
Warm Reset

Software
Source

Software
Location

206

HPS Boot ROM

Boot ROM code scans
boot-select and clock-select
pins to determine flash clock
setup and boot source
Configures minimal set of
HPS I/O pins to read boot
source using I/O config. data
stored in Boot ROM
Performs CRC check & loads
2nd stage bootloader
(Preloader) software from
boot source into On-Chip
RAM
Boot ROM hands off
program control to the 2nd

stage bootloader

Boot ROM

On-Chip
RAM

FPGA, Flash,
MMC/SD Card

2nd Stage BL

User
BootLoader

On-Chip
RAM

OS

Applications

FPGA
Config. Data

Boot ROM

Designing with an ARM-based System on a Chip

A-MNL-HW-SOC-15-0-v2 103

DO NOT DISTRIBUTE

Boot Flow

Boot ROM

2nd Stage BL

Power On /
Warm Reset

User
Bootloader

Software
Source

Software
Location

207

Second Stage Bootloader

Built from Qsys handoff files
Limited by size of On-Chip
memory
HPS I/O and SDRAM
configuration data compiled
into 2nd Stage Bootloader

As software (Cyclone V and Arria V
SoCs) or FPGA bitstream (Arria 10
SoCs)

Sets HPS pin configuration
Initializes, calibrates and
verifies SDRAM setup
Copies next stage software
(e.g. U-Boot or OS) into
SDRAM from boot source
Hands off control to the next
stage

Boot ROM

On-Chip
RAM

DDR

FPGA, Flash,
MMC/SD Card

2nd Stage BL

User
BootLoader

Peripheral

On-Chip
RAM

User
BootLoader

OS

Applications

FPGA
Config. Data

Boot Flow

Boot ROM

2nd Stage BL

Power On /
Warm Reset

U-Boot

OS
(eg. Linux)

Software
Source

Software
Location

208

HPS User Bootloader

Application/OS specific
Bootloader Copies
Operating System from
non-volatile RAM (or
Peripheral)
to SDRAM
 Linux, VxWorks, etc

Runs any other processes
specified
Hands off control to OS
For Arria 10 devices, the
functionality of the User
Bootloader is built into the
2nd Stage Bootloader

Boot ROM

On-Chip
RAM

DDR

FPGA, Flash,
MMC/SD Card

2nd Stage BL

U-Boot

Peripheral

OS
(eg. Linux)

U-Boot

OS
(eg. Linux)

OSOS

Applications

FPGA
Config. Data

Designing with an ARM-based System on a Chip

A-MNL-HW-SOC-15-0-v2 104

DO NOT DISTRIBUTE

Software
Source

Peripheral

Applications

Boot Flow

Boot ROM

2nd Stage BL

Power On /
Warm Reset

U-Boot

Linux

Applications

Software
Location

209

HPS Linux OS Start Up

OS launches
Runs BSP/device driver
initialization routines
 Processor setup

(memory, interrupts etc.)
 CPU 1 initializes and runs
 Peripheral hardware setup

(detect, verify and initialize)

Creates OS specific
resources
 e.g. Root File System

Same OS runs on both
processors
Loads and runs
Applications

Boot ROM

On-Chip
RAM

DDR

FPGA, Flash,
MMC/SD Card

2nd Stage BL

U-Boot

OS+DevTree

U-Boot

Linux

Applications

Applications

FPGA
Config. Data

Typical Boot Scenarios

210

Boot
ROM

Preloader

Bootloader OS Application

Reset

Bare-metal
Application

RTOS Application

Boot
ROM

Bootloader

OS Application

Reset

Bare-metal
Application

Cyclone V and Arria V families

Arria 10 and likely future families

Designing with an ARM-based System on a Chip

A-MNL-HW-SOC-15-0-v2 105

DO NOT DISTRIBUTE

“Bare Metal” Programming

211

Bare metal: the actual register interfaces and hardware
features of the processor system
Bare metal programming: code that reads and writes direct
to the hardware with no intervening software
functions/code/abstraction layer
The less operating system resources are used, the closer
you are to bare-metal
Requires in-depth knowledge of hardware to write

HWLibs Components

212

SoC Abstraction Layer (SoCAL) - (low level HAL)
 Macro based abstraction layer to access low-level hardware IP registers
 Header files
 C code generated from chip RTL
 Decouples software from hardware
 Each type of HPS has its own SoCAL

Hardware Manager (HWMgr)
 Collection of C and some assembly language APIs for more complex

higher level access to SoC hardware
 #includes SoCAL header files
 Written by Altera engineers

Designing with an ARM-based System on a Chip

A-MNL-HW-SOC-15-0-v2 106

DO NOT DISTRIBUTE

HWLibs Documentation

213

SoC Abstraction Layer:
 <SoC EDS folder>/ip/altera/hps/altera_hps/doc/soc_<fam>/socal/html/index.htm

Hardware Manager
 <SoC EDS folder>/ip/altera/hps/altera_hps/doc/hwmgr/html/index.htm

Creating System Header File

214

Create system header file from Qsys .sopcinfo file
 Abstract away FPGA component properties from software
 Run sopc-create-header-files from embedded command shell

Executable part of the Quartus II software install

 Outputs various .h files
For the system
For the processors
For each of the masters in the system

sopc-create-header-files <qsys system>.sopcinfo

Designing with an ARM-based System on a Chip

A-MNL-HW-SOC-15-0-v2 107

DO NOT DISTRIBUTE

Hardware Design Agenda

215

Hardware design flow with Qsys
Configuring the HPS IP
Software handoff
Avalon/AXI overview
HPS simulation
HPS configuration and booting
SoC debug

SoC Debug Agenda

216

Debug Overview
System Console
FPGA Adaptive Software Debug

Designing with an ARM-based System on a Chip

A-MNL-HW-SOC-15-0-v2 108

DO NOT DISTRIBUTE

Traditional Software and FPGA Debug

217

All traditional FPGA and ARM software debug methods still
apply
ARM software debug
 JTAG tools, compiler, debugger, profiler, trace, etc

FPGA
 SignalProbe, SignalTap II Logic Analyzer, System Console, USB-Blaster

Cable, Programmer, etc

HPS Software Debug Interfaces Supported

218

ARM DS-5 Altera Edition toolchain
JTAG
 Direct connection to hardware
 Halts processor, can master system via control of processor
 Debug any code at low level – driver, OS kernel, bare metal application
 Dual core SMP processor debugging
 OS aware debugger display optional

Ethernet
 Requires running software to drive it
 Processor/OS cannot be halted
 OS Application can be halted
 Good for high level programming (fast, easy)
 Debuggers usually have OS aware GUIs and features
 Cannot do low level debug (kernel, driver, bare metal) as OS cannot be

stopped

Designing with an ARM-based System on a Chip

A-MNL-HW-SOC-15-0-v2 109

DO NOT DISTRIBUTE

Hardware Debug with SignalTap II Logic Analyzer

219

Part of the Quartus II software
Built in logic analyzer capability for internal FPGA logic
Captures the state of signals when running at speed
Uses standard JTAG connection to PC
User defines target signals and trigger conditions to capture data
Data read back from FPGA memory and displayed on PC
Works on the FPGA side of the SoC

JTAGUSB
SignalTap

Altera SoC Embedded Design Suite

220

Comprehensive software / firmware development environment
FPGA-adaptive software debugging capabilities
 ARM DS-5 Altera Edition Toolkit

Hardware / software handoff tools
Linux application development
 Yocto Linux build environment

 Pre-built binaries for Linux / U-Boot

 Work in conjunction with the Community Portal

Bare-metal application development
 SoC Hardware Libraries

 Bare-metal compiler tools

Design examples

Designing with an ARM-based System on a Chip

A-MNL-HW-SOC-15-0-v2 110

DO NOT DISTRIBUTE

FPGA-Adaptive Debugging

221

ARM DS-5 Altera Edition Features

Removes debugging barrier between CPUs and FPGA
Single USB-Blaster target connection for SW and HW debug
Hardware cross-triggering between the CPU and FPGA domains
FPGA events inserted non-intrusively into HPS program trace
Debugger with visibility into FPGA registers
 Automatic creation of register views

Altera
USB-Blaster™

Connection

Altera
USB-Blaster™

Connection

SoC Debug Agenda

222

Debug Overview
System Console
FPGA Adaptive Software Debug

Designing with an ARM-based System on a Chip

A-MNL-HW-SOC-15-0-v2 111

DO NOT DISTRIBUTE

What is System Console?

223

Quick debug of Qsys systems through an interactive Tcl console
 Opens as a separate window
 Or in the Nios® II and Embedded Command Shell

Debug over various available communication channels
 JTAG, TCP/IP, or USB

Read from or write to memory-mapped components
No processor required

Usage Examples

224

System-level debug
 Board bring-up and interface testing
 System clock, reset and JTAG chain validity testing

Bug Isolation
 HW/SW bug isolation
 Replicate MM access pattern and ensure proper response
 Dissecting locked systems while in the locked state

Process Automation
 Automate production tests

Custom Visualization
 Create interactive Dashboards customized for a system
 Used to drive manual processes or get immediate feedback

Designing with an ARM-based System on a Chip

A-MNL-HW-SOC-15-0-v2 112

DO NOT DISTRIBUTE

System Console Interfaces

225

Qsys
interconnect

User component

System Console

JTAG UARTJTAG to
Avalon Master

Bridge

Nios II
processor

MM Slave

Avalon-MM
Master

Avalon-MM
Master

Avalon-MM
Slave

Through JTAG and Virtual JTAG Hub

USB Debug
Master

Avalon-MM
Master

USB

System Console GUI Launch

226

From Qsys Tools Menu

From Quartus
Tools menu

From Nios II or Embedded Command Shell:
system-console

Designing with an ARM-based System on a Chip

A-MNL-HW-SOC-15-0-v2 113

DO NOT DISTRIBUTE

System Console GUI

227

System Console Services

228

Collection of functions to accomplish a type of tasks
Accessed through a service instance which may be
associated with a particular component
Run get_service_types to return all available services
Example Services
 jtag_debug

Perform jtag chain, system reset, and system clock debug
 master

Provide control over a master interface to perform reads and writes on slaves
 monitor

Efficiently and regularly read from a range of addresses
 dashboard

Easily add GUI elements such as buttons and displays to control the system
 And many others

Designing with an ARM-based System on a Chip

A-MNL-HW-SOC-15-0-v2 114

DO NOT DISTRIBUTE

Usage Flow – Summary

229

3. Launch System Console

5. Perform desired operation(s) with
the service

2. Connect board and program FPGA

4. Locate and claim service path

1. Add required component to Qsys

6. Close the service

set mpath [lindex \
[get_service_paths master] 0]

set claim_path \
[claim_service master $mpath “”]

master_write_memory $claim_path \
0x2000 [list 0x01 0x02]

master_read_memory $claime_path \
0x2000 2

close_service master $claim_path

Complete master write
and read example script

jtag_debug Service Type

230

Verify functionality and signal integrity of the JTAG chain
Some functions requires JTAG to Avalon Master Bridge
Verify the clock and reset signals
Issue reset(s) to the system

Designing with an ARM-based System on a Chip

A-MNL-HW-SOC-15-0-v2 115

DO NOT DISTRIBUTE

Issue JTAG Reset

231

jtag_debug_reset_system <path>
 Issues a reset to connected components in the system through the

master_reset output of the JTAG to Avalon Master Bridge

% jtag_debug_reset_system $claim_path

Verify Clock and Reset

232

jtag_debug_sample_clock <path>
 Returns the value of the asynchronously sampled system clock
 May require multiple samplings to see toggling

jtag_debug_sample_reset <path>
 Returns the value of reset signal

jtag_debug_sense_clock <path>
 Returns 1 if clock has ever toggled

% jtag_debug_sample_clock $claim_path

0

% jtag_debug_sample_clock $claim_path

1

% jtag_debug_sense_clock $claim_path

1

Designing with an ARM-based System on a Chip

A-MNL-HW-SOC-15-0-v2 116

DO NOT DISTRIBUTE

Clock and Reset Visibility

233

Badge in explorer window nodes
indicate clock and reset status
Status updated with Refresh
Connections (Tools menu)
Green for OK
Red for no clock
Green with line for reset asserted
and held

Master Service Complete Example

234

set claim_path [claim_service master $m_path {} {}]

master_write_memory $claim_path 0x02100000 32

master_read_memory $claim_path 0x02100000 1

close_service master $claim_path

Designing with an ARM-based System on a Chip

A-MNL-HW-SOC-15-0-v2 117

DO NOT DISTRIBUTE

Dashboards

235

Create widgets in System Console GUI
Customize the dashboard using Tcl commands
Interact with live instances of an IP core
Refer to the “System Console” online training or
“Advanced Qsys System Integration Tool Methodologies"
Instructor Led Training

SoC Debug Agenda

236

Debug Overview
System Console
FPGA Adaptive Software Debug

Designing with an ARM-based System on a Chip

A-MNL-HW-SOC-15-0-v2 118

DO NOT DISTRIBUTE

Cross Triggering

237

Synchronization of debug actions on the HPS with
hardware events in the FPGA (including SignalTap II
instances)
 Facilitate the debugging of software interacting with hardware

Features provided
 FPGA to HPS cross trigger

Hardware signal or SignalTap II logic analyzer trigger out breaking HPS
execution

 HPS to FPGA cross trigger
Breaking code execution in the HPS cores acts as a input trigger for the
SignalTap II logic analyzer or other hardware

Cross Triggering Interface (CTI)

238

Standard ARM CoreSight™ debug component in HPS
 Documented in the CTI CoreSight specifications

Debug Cross Triggers between FPGA and MPU
 8 trigger inputs + 8 ACK signals
 8 trigger outputs + 8 ACK signals

Runs on FPGA clock source
Trigger handshaking option is supported
 Trigger output to FPGA will remain asserted until

ACK signal received from FPGA

CTI connected to Cross Trigger Matrix (CTM)
 Configures trigger connections to debug infrastructure

Designing with an ARM-based System on a Chip

A-MNL-HW-SOC-15-0-v2 119

DO NOT DISTRIBUTE

Synchronizing Hardware Events with HPS Trace

239

Correlate hardware event or SignalTap II trigger out with
the HPS trace stream without stopping processor
Hardware signals or SignalTap II trigger out drive the event
inputs of the HPS System Trace Macrocell (STM)
Hardware events generated are stored in trace buffer
along with program trace generated by the processors

M
ic

to
rC

on
ne

ct
or

HPS

FPGA

Altera SoC Debug Architecture

TMC
ETR

TPIU

CTI CTI

CTI

CTM

DAP

Debug bus

SWD/
JTAG

PTM PTM

Trace busSTM

ARM CPUARM CPU

S
ys

te
m

bu
s

FPGA IP

Cross-triggers between
FPGA(8) and CPUs (8)

Export trace
to trace port,
peripheral or

memory

Up to 28 HW signal events
injected into trace stream

Full trace capability on
hardened part of the SoC

240

Designing with an ARM-based System on a Chip

A-MNL-HW-SOC-15-0-v2 120

DO NOT DISTRIBUTE

Using Cross Trigger and/or Trace with Custom Hardware

241

Enable HPS events and cross trigger interfaces
 Enabling STM hardware events allow FPGA modules to synchronize FPGA

events with the program trace
 Enabling the Cross Trigger Interface allows FPGA modules to halt the

processor or take the HPS trigger out
 Connect to FPGA hardware

Must be disabled if to be used with SignalTap II Logic Analyzer
 Configure cross triggering and events from within SignalTap II setup

SignalTap II Configuration for Cross Trigger

242

HPS -> FPGA Cross Trigger
 Allow the breaking in the running of

the HPS core to act as the trigger in
condition for SignalTap II Logic
Analyzer

FPGA -> HPS Cross Trigger
 Allows SignalTap II trigger out to

break the execution of the HPS core
 Allow trigger out to generate STM

hardware event in the HPS trace

Qsys HPS Component Export of Cross Trigger Interface must be disabled

Designing with an ARM-based System on a Chip

A-MNL-HW-SOC-15-0-v2 121

DO NOT DISTRIBUTE

Before Running Debugger with Cross Triggering Enabled

243

Make sure FPGA is programmed
Ensure CTI interface enabled
 Interface enabled in Qsys HPS parameterization or in SignalTap II setup
 Interface connected to appropriate logic

Otherwise HPS will be stuck in an unknown state trying to
read the CTI register requiring a reboot

244

ARM DS-5 Debugger

Projects

File Viewer Outline View
(View functions,
enums, classes,

structs etc.)

Select Perspective

Designing with an ARM-based System on a Chip

A-MNL-HW-SOC-15-0-v2 122

DO NOT DISTRIBUTE

Debug Perspective

245

Stack

Debug Controls

Register View
Including FPGA registers

Debugger
Commands

Application Console
Source File

Debugger Configuration for Cross Trigger

246

From DS-5 Debug Configurations
 Edit DTSL (Debug and Trace Services Layer) options, Cross Trigger Tab

Ensure user is aware system clocks
must be initialized prior to running the
debugger with Cross Trigger enabled

Designing with an ARM-based System on a Chip

A-MNL-HW-SOC-15-0-v2 123

DO NOT DISTRIBUTE

Software to FPGA Cross-Domain Debug

Trigger from the software world to the FPGA world
 DS-5 running with cross trigger enabled

HARDWARE TRIGGER!

SOFTWARE TRIGGER

247

FPGA to Software Cross-Domain Debug

Trigger from the FPGA world to the software world
 DS-5 running and enable to wait for cross-trigger

Hardware Trigger

Execution stop
or

SW Trace Event

248

Designing with an ARM-based System on a Chip

A-MNL-HW-SOC-15-0-v2 124

DO NOT DISTRIBUTE

Test Your Knowledge

249

True or False, users can alter the boot ROM code
 False

What’s the best way to resolve low-level driver issues?
a) Always blame the software engineer
b) Always blame the hardware engineer
c) Use FPGA-adaptive software debugging capabilities of the SoC to

efficiently find and solve the problem

Hardware Design Agenda

250

Hardware design flow with Qsys
Configuring the HPS IP
Software handoff
Avalon/AXI overview
HPS simulation
HPS configuration and booting
SoC debug
Conclusion

Designing with an ARM-based System on a Chip

A-MNL-HW-SOC-15-0-v2 125

DO NOT DISTRIBUTE

Golden Reference Design

251

Complete system design with
Linux software support
 Simple custom logic design in FPGA
 All source code and Quartus II / Qsys

design files for reference
 Include all compiled binaries-

example can run on an Altera SoC
Development Kit to jumpstart
development

SoC Out-of-Box Reference Design Demo

252

Remote login to
board via IP
address displayed
on board

Linux host with webserver running

LED
Push button

Through webserver portal to
- SSH to Linux Console
- FTP
- Blinking LED
- Echo text on LCD

*Webserver Portal

Cyclone V SoC DevKit

*Part of the software included with the Golden Hardware Reference Design

Designing with an ARM-based System on a Chip

A-MNL-HW-SOC-15-0-v2 126

DO NOT DISTRIBUTE

SoC Development Boards

253

Cyclone V SoC
Arria V SoC
Arria 10 SoC
DE1-SoC education board
Arrow SOCKit
Macnica Helio Board
EBV SoCrates
and many others

Follow-on Training

254

Altera
 Developing Software for an ARM-based SoC

Free Altera Online Trainings
 SoC Hardware Overview

The Microprocessor Unit
Interconnect and Memory
System Management, Debug and GP Peripherals
Flash Controllers and Interface Protocols

 SoC Hardware Design Flow
 SoC Software Design Flow

Doulos SoC hardware and software training courses
ARM training courses:
 ARM Cortex-A9 MPCore Software Development (3 days)

AC6 training courses

Designing with an ARM-based System on a Chip

A-MNL-HW-SOC-15-0-v2 127

DO NOT DISTRIBUTE

Summary

255

You should now be able to
Explain the pieces HPS in the SoC devices
Use Qsys to instantiate and configure an HPS component
Explain the similarities and differences with the Avalon and
AXI protocols
Debug an SoC device using the System Console and
SignalTap II logic analyser in conjunction with DS-5
Explain the hardware handoff files for the software flow

Many Ways to Learn

256

Videos
Online Training

Virtual Classes Instructor-led Training

Designing with an ARM-based System on a Chip

A-MNL-HW-SOC-15-0-v2 128

DO NOT DISTRIBUTE

Instructor-Led and
Virtual Training Curriculum

http://www.altera.com/training

Quartus® II
Software:

Foundation

Introduction
to

Verilog

Introduction
to

VHDL Design
Optimization

Using
Incremental
Compilation

Quartus II
Software:
Debug &
Analysis

Advanced
VHDL

Advanced
Verilog

Advanced
Qsys

Designing
with the
Nios® II

Processor

Advanced
Timing

Analysis

Timing
Closure

Quartus II
Software:

Timing
Analysis

External
Memory

Interfaces

Video
Design

Framework
Workshop

Developing
Software for
the Nios II
Processor

DSP Builder
Advanced
Blockset

Building
Gigabit

Interfaces in
28-nm

Devices

Introduction
to OpenCL™

for Altera
FPGAs

Partial
Reconfig-

uration

Developing
Software for

an ARM®-
based SoC

FPGA

Designing
with an ARM
-based SoC

FPGA

Constraining
asynchronous
I/O interfaces;

matching
internal path
delay; more

source
synchronous

examples

Adv. PCIe
Root Port,

SRIOV, CvP,
Throughput,
XCVR Opt &

SI

Low level
System

Debug with
System
Console

Implementing
Ethernet

(10G up to
400G)

Foundation Classes

Advanced Follow-On Classes

Specialized Classes

Available as a Virtual Class

Recommended progression

Possible Future Classes

Other?

Security in
FPGAs

(Including
SEU)

Creating PCI
Express™

Links Using
FPGAs

Optimizing
OpenCL

Introduction
to

Qsys

Each course is
1 day long

Qsys
Custom

Avalon / AXI
Components

Building
Gigabit

Interfaces in
Generation
10 Devices

Performance
Optimization
with Stratix

10 HyperFlex
Architecture

Advanced
Optimization
with Stratix

10 HyperFlex
Architecture

OpenCL
Custom
Board

Development

258

Exercise 3

Debugging

Designing with an ARM-based System on a Chip

A-MNL-HW-SOC-15-0-v2 129

DO NOT DISTRIBUTE

Thank You

Designing with an ARM-based System on a Chip

A-MNL-HW-SOC-15-0-v2 130

DO NOT DISTRIBUTE

Designing with the ARM-Based SoC

Exercise Manual

Software Requirements:

Quartus® II Software v15.0 with the Cyclone® V family installed
SoC Embedded Development Suite 15.0

Hardware Requirements:

 Terasic® DE- SoC development kit

http://www.altera.com/customertraining/ILT/Designing_with_ARM_SoC_15_0_v2.zip

DO NOT DISTRIBUTE

http://www.altera.com/customertraining/ILT/Designing_with_ARM_SoC_15_0_v2.zip

Exercise Manual Designing with an ARM-Based SoC Lab 1

 Copyright © 2015 Altera Corporation
 A-MNL-HW-SoC-EX-15-0-v2

 2

 DO NOT DISTRIBUTE

Exercise Manual Designing with an ARM-Based SoC Lab 1

 Copyright © 2015 Altera Corporation
 A-MNL-HW-SoC-EX-15-0-v2

 3

Exercise 1

Instantiate the HPS Component
in Qsys

DO NOT DISTRIBUTE

Exercise Manual Designing with an ARM-Based SoC Lab 1

 Copyright © 2015 Altera Corporation
 A-MNL-HW-SoC-EX-15-0-v2

 4

Objectives:
• Add a Hard Processor System (HPS) component to an existing Qsys System

• Configure the HPS interfaces and other parameters

As you proceed through the exercises, be sure to completely read the instructions for each step
and sub-step in this lab manual. Use the lines next to each step (____) to keep track of your
progress or to check off completed steps in the exercises.

If you have any questions or problems, please ask the instructor for assistance.

DO NOT DISTRIBUTE

Exercise Manual Designing with an ARM-Based SoC Lab 1

 Copyright © 2015 Altera Corporation
 A-MNL-HW-SoC-EX-15-0-v2

 5

Step 1: Set Up an Embedded Hardware Design Project

____ 1. Find the lab materials on your training computer by navigating in the windows explorer to

the C:\altera_trn\Designing_with_ARM_SoC directory. This directory will be referred to
throughout these exercises as the project folder.

____ 2. If there are already existing subdirectories in the project directory, delete them before

continuing. This will ensure you are starting fresh with clean files and not files created from

a previous class. There should be nothing in the directory other than the self-extracting zip

file.

____ 3. Double-click on the file Designing_with_ARM_SoC_15_0_v2.exe

____ 4. Select Unzip to extract its contents to the Designing_with_ARM_SoC folder.

____ 5. Click Close when complete.

____ 6. Change directory into the <project_folder>\Labs directory.

In this folder, you will find the Quartus II project that you will use today.

____ 7. Start the Quartus II version 15.0 Software from the windows start menu

____ 8. Open the soc_system.qpf by selecting File -> Open Project from the menu bar and then

selecting the <project_folder>\Labs\soc_system.qpf file.

Be sure to use File -> Open Project and not File -> Open.

____ 9. Click Open.

Next, you will start building your system by instantiating the HPS component.

____ 10. From the Quartus II Tools menu, choose Qsys
This opens Qsys system integration tool which is required to design with the Hard Processor
System, we will talk more about the advantages of using this tool later in the presentation.
The Qsys tool is used to generate the HDL file for the system which will then be compiled.

____ 11. Double-click the soc_system.qsys file when prompted to open.

In the interest of speeding your creation of the system along, the Qsys system already

contains several components and a Clock Source component. If you were to create your own

Qsys system from scratch, only the Clock Source component would be present at first.

DO NOT DISTRIBUTE

Exercise Manual Designing with an ARM-Based SoC Lab 1

 Copyright © 2015 Altera Corporation
 A-MNL-HW-SoC-EX-15-0-v2

 6

Step 2: Add Hard Processor System (HPS) Component

The HPS component consists of the dual ARM® Cortex™- A9 processor with various

peripherals that can be enabled for use in the system. The block diagram below shows the

system, divided up into HPS and FPGA portions. The items in the upper HPS portion will be

configured now.

There are multiple tabs used to configure the HPS component. These tabs are FPGA

interfaces, Peripheral Pin Multiplexing, HPS Clocks, and SDRAM. Each of these tabs will

be looked at in sequence to configure them.

DO NOT DISTRIBUTE

Exercise Manual Designing with an ARM-Based SoC Lab 1

 Copyright © 2015 Altera Corporation
 A-MNL-HW-SoC-EX-15-0-v2

 7

____ 1. In the Search box under the IP Catalog tab, type “processor”.

The search feature is very useful when locating components in the library.

____ 2. Double-click Arria V/Cyclone V Hard Processor System.

By double clicking, we are creating an instance of the IP into our current system. This also

opens the HPS component dialog box allowing us to customize the component.

We will be discussing every one of the options in the presentation later.

____ 3. On the FPGA Interfaces tab, disable the MPU standby and event signal, which should be

enabled by default.

These are internal signals that indicate if the microprocessor is in standby mode and can

wake up the CPU. We are disabling these because our design does not have any logic in

the FPGA fabric that can take advantage of these features.

Note: It may take up to 2 seconds for the GUI to respond to your selections.

____ 4. Ensure that the general purpose signals are disabled (default).

These are signals which produce a pair of 32-bit unidirectional general purpose interfaces

between the FPGA and HPS. For this exercise, these signals are not needed

____ 5. Enable System Trace Macrocell hardware events

This allows custom hardware to inject trace events to the HPS trace bus

____ 6. In the AXI Bridges section, ensure that the FPGA-to-HPS interface width is set to 64-bit.

Enabling the FPGA to HPS interface allows masters within the FPGA to access to HPS

peripherals. 64-bits is the width of the interface to the hardware logic.

DO NOT DISTRIBUTE

Exercise Manual Designing with an ARM-Based SoC Lab 1

 Copyright © 2015 Altera Corporation
 A-MNL-HW-SoC-EX-15-0-v2

 8

____ 7. Set the HPS-to-FPGA interface width to 128-bit

Enabling the HPS to FPGA interfaces allows the HPS master to access the FPGA

peripherals. Setting it to a wider width allows the interface to run on a slower clock but

maintaining throughput.

____ 8. Ensure that the lightweight HPS-to -FPGA interface width is set to 32-bit.

Unlike the regular HPS to FPGA bridge which is tuned for throughput, the lightweight HPS-

to-FPGA bridge is tune for latency. Using two HPS to FPGA bridges allows us to

differentiate traffic type to increase performance. Control and status type of access can now

use the lightweight bridge while data transfers will be assigned to the regular high

throughput HPS to FPGA Bridge.

The settings should now look like this:

Scrolling down the FPGA interface tab, there are still more options available to set. There

are the FPGA-to-HPS SDRAM interface settings, Reset settings and DMA Peripheral

Request settings.

DO NOT DISTRIBUTE

Exercise Manual Designing with an ARM-Based SoC Lab 1

 Copyright © 2015 Altera Corporation
 A-MNL-HW-SoC-EX-15-0-v2

 9

____ 9. Scroll down the FPGA interface window until you see the FPGA-to-HPS SDRAM

Interface and select the f2h_sdram0 interfaces in the window.

The FPGA-to-HPS SDRAM interface allow FPGA masters to directly read/write from the

HPS SDRAM. If you don’t need cache coherency support this is the fastest way to access the

SDRAM. If you do need cache coherency then you can use the FPGA-to-HPS Bridge through

the Accelerator Coherency Port to access the SDRAM.

____ 10. Click the “-“button to remove the interface since we won’t be using it.

____ 11. In the Resets section enable the three FPGA-to-HPS reset requests while ensure HPS-to-

FPGA cold reset and warm reset handshake are disabled.

Our FPGA components will be able to reset the HPS.

____ 12. Scroll down to the DMA Peripheral Request section and verify that all rows indicate “No”

under the Enabled column.

Enabling the DMA peripheral request would allow soft logic in the FPGA fabric to

communicate with the DMA controller in the HPS through one of the eight request IDs. Our

design does not use this capability.

____ 13. Scroll down to the Interrupts section and enable the FPGA-to-HPS interrupts option.

This will provide 64 bits of interrupts for the FPGA components to send interrupts to the

Generic Interrupt Controller in the HPS.

DO NOT DISTRIBUTE

Exercise Manual Designing with an ARM-Based SoC Lab 1

 Copyright © 2015 Altera Corporation
 A-MNL-HW-SoC-EX-15-0-v2

 10

Step 3: Configure HPS Peripherals (MAC, NAND, QSPI, SDIO, USB)

Under the Peripheral Pins tab, there are options to enable the HPS peripherals. There are

more peripherals than there are available IOs to support them, so choices will have to be made

regarding which HPS component uses which pins. To accommodate this there may be multiple

I/O sets that we can use for each component.

By hovering with a mouse over each interface in the Peripheral Pins tab (EMAC1 mode in the

example below), a list of the signals used in that interface pops up.

DO NOT DISTRIBUTE

Exercise Manual Designing with an ARM-Based SoC Lab 1

 Copyright © 2015 Altera Corporation
 A-MNL-HW-SoC-EX-15-0-v2

 11

____ 1. Select the Peripheral Pins tab.

This tab allows us to enable HPS components as well as to choose which one of the IOs are

assigned to those enabled components.

____ 2. Under the Ethernet Media Access Controller section, set EMAC1 pin to HPS I/O Set 0

and ensure the EMAC1 mode is set to RGMII.

We have now enabled Ethernet MAC 1 using the MDIO PHY management interface.

____ 3. Under the QSPI Flash Controller section, set QSPI pin to HPS I/O Set 0.

DO NOT DISTRIBUTE

Exercise Manual Designing with an ARM-Based SoC Lab 1

 Copyright © 2015 Altera Corporation
 A-MNL-HW-SoC-EX-15-0-v2

 12

____ 4. Ensure the QSPI mode is set to 1 SS (slave select) for use with 1 device.

____ 5. In the SDMMC/SDIO Controller section, set SDIO pin to HPS I/O Set 0.

____ 6. Set the SDIO mode to 4-bit data.

____ 7. Under the USB Controllers section, set USB1 pin multiplexing to HPS I/O Set 0, and

ensure that the USB1 PHY interface mode is set to SDR with PHY clock output mode.

____ 8. Under the SPI Controllers section, set SPIM1 pin to HPS I/O Set 0.

____ 9. Set the SPIM1 mode to Single Slave Select.

____ 10. Under the UART Controllers section, set UART0 pin to HPS I/O Set 0.

____ 11. Set the UART0 mode to No Flow Control.

DO NOT DISTRIBUTE

Exercise Manual Designing with an ARM-Based SoC Lab 1

 Copyright © 2015 Altera Corporation
 A-MNL-HW-SoC-EX-15-0-v2

 13

____ 12. Under the I2C Controllers section, set I2C0 pins to HPS I/O Set 0.

____ 13. Ensure that the I2C0 mode is set to I2C.

____ 14. Set I2C1 pins to HPS I/O Set 0.

____ 15. Ensure that the I2C1 mode is set to I2C.

____ 16. Ensure CAN Controllers and the Trace Port Interface unit are all Unused

DO NOT DISTRIBUTE

Exercise Manual Designing with an ARM-Based SoC Lab 1

 Copyright © 2015 Altera Corporation
 A-MNL-HW-SoC-EX-15-0-v2

 14

____ 17. Check the messages window in the HPS component configuration window and verify that

there are NO errors regarding conflicts.

If there are errors, they would appear at in the message window. Here’s an example

 Error: hps_0: Refer to the Peripherals Mux Table for more details. The selected

peripherals 'EMAC1' and 'NAND' are conflicting.

Two interfaces cannot share the same pins. The peripherals mux table at the bottom shows if

there are pins with invalid assignments, such as having multiple interfaces. (The bold

outlines shown in the screen shot below indicate which signals are in use.)

If an error similar to the one above appears, check the peripherals mux table to find out

which interfaces are in conflict and correct them.

Only one signal per row should have a bold outline in the peripherals mux table as follows:

DO NOT DISTRIBUTE

Exercise Manual Designing with an ARM-Based SoC Lab 1

 Copyright © 2015 Altera Corporation
 A-MNL-HW-SoC-EX-15-0-v2

 15

____ 18. In the Peripherals mux table, find GPIO9 under the GPIO column (5th column of the table).

Since this particular pin RGMII0_TX_CTL is not being used by another component, we’re

able to configure it as a General Purpose IO.

____ 19. Enable GPIO09 by clicking the GPIO09 button.

____ 20. Repeat the above 2 steps for these additional GPIO pins:

GPIO35

GPIO40

GPIO48

GPIO53

GPIO54

GPIO61

Step 3: Configure HPS Clocks

On the HPS Clocks tab the specific clock sources and frequencies are specified. Remember from the

presentation that these properties are all managed by the Clock Manager Component. When you make

the selections on this tab the information is used to generate the 2nd stage bootloader software which

executes these selections.

____ 1. Click on the HPS Clocks Tab

____ 2. Click on the Input Clocks Tab

DO NOT DISTRIBUTE

Exercise Manual Designing with an ARM-Based SoC Lab 1

 Copyright © 2015 Altera Corporation
 A-MNL-HW-SoC-EX-15-0-v2

 16

____ 3. Ensure EOSC1 and EOSC2 clock frequencies are set to 25Mhz and all FPGA-to-HPS

References clocks are disabled.

In this design we will not be sourcing any clocks from the FPGA fabric nor sending any

clocks to the FPGA fabric.

____ 4. Click on the Output Clocks Tab.

____ 5. Ensure reference is set to EOSC1 clock and clock sources are set as the screen capture.

____ 6. Disable “Use default MPU clock frequency”

____ 7. Instead set the MPU clock frequency to 800 MHz

DO NOT DISTRIBUTE

Exercise Manual Designing with an ARM-Based SoC Lab 1

 Copyright © 2015 Altera Corporation
 A-MNL-HW-SoC-EX-15-0-v2

 17

Step 4: Configure SDRAM

Under the SDRAM tab, there are options to set the SDRAM parameters for the DDR3 on the board.

There are four tabs for the SDRAM configuration, PHY Settings, Memory Parameters, Memory Timing,

and Board Settings.

The settings need to match the datasheet of the Micron DDR3 device on the board. In the interest of time,

you will use a preset rather than change all the settings manually. The preset for that configuration

stores all of the relevant settings. You can always create your own preset by clicking the New... button

then save the preset with a custom name.

____ 1. Click the SDRAM tab in the HPS component wizard.

Ensure the Preset window is visible. If not, the window is hidden to the right of the wizard.

Make the window visible by dragging the right border of the dialog box to the left.

____ 2. Select the DE1 SoC SDRAM preset in the presets window.

____ 3. Click Apply. You should see DE1 SoC SDRAM preset appear in bold

When a preset is in bold, it signifies all of the settings in the preset have been applied.

DO NOT DISTRIBUTE

Exercise Manual Designing with an ARM-Based SoC Lab 1

 Copyright © 2015 Altera Corporation
 A-MNL-HW-SoC-EX-15-0-v2

 18

____ 4. Click the PHY Settings tab and verify that the circled settings match the following.

____ 5. Click the Memory Parameters and verify that the circled settings match the following.

____ 6. Scroll down to the Memory Initialization Options section and verify that ODT Rtt

nominal value is set to RZQ/6.

DO NOT DISTRIBUTE

Exercise Manual Designing with an ARM-Based SoC Lab 1

 Copyright © 2015 Altera Corporation
 A-MNL-HW-SoC-EX-15-0-v2

 19

____ 7. Click on the Memory Timing tab and verify that the circled settings match the following
screen shot.

 (These values are found on the data sheet for the Micron part. If further knowledge on these

is required, please attend our instructor led External Memory Interfaces course or one of our

free Memory Interface online trainings where we will discuss in detail how to implement a

successful modern high speed memory controller.

DO NOT DISTRIBUTE

Exercise Manual Designing with an ARM-Based SoC Lab 1

 Copyright © 2015 Altera Corporation
 A-MNL-HW-SoC-EX-15-0-v2

 20

____ 8. Click the Board Settings tab and verify that “Use Altera’s default settings” is selected

under both the Setup and Hold Derating section and the Channel Signal Integrity section.

____ 9. Scroll down to the Board Skew section and verify that the board skews are set as follows:

DO NOT DISTRIBUTE

Exercise Manual Designing with an ARM-Based SoC Lab 1

 Copyright © 2015 Altera Corporation
 A-MNL-HW-SoC-EX-15-0-v2

 21

____ 10. Click Finish in the HPS configuration window to accept the configuration settings and close

the window.

There will be errors in the Qsys system as we haven’t made any of the necessary connection

to the HPS yet, we will resolve those in exercise 2.

Exercise Summary

• Added an HPS component to a Qsys System

• Configured an HPS component

END OF EXERCISE 1

DO NOT DISTRIBUTE

DO NOT DISTRIBUTE

Exercise Manual Designing with an ARM-Based SoC Lab 2

 Copyright © 2015 Altera Corporation
 A-MNL-HW-SoC-EX-15-0-v2

 23

 Exercise 2

Complete the HPS Qsys System

DO NOT DISTRIBUTE

Exercise Manual Designing with an ARM-Based SoC Lab 2

 Copyright © 2015 Altera Corporation
 A-MNL-HW-SoC-EX-15-0-v2

 24

Objectives:
• Connect the HPS instantiation with the FPGA system in Qsys

• Instantiate additional FPGA components in Qsys

• Generate the Qsys system

Our completed system will include the following components:

Hard Processor System On-chip memory Clock Source

JTAG to Avalon® Master Bridge (To Master HPS Components)

JTAG to Avalon Master Bridge (To Master FPGA Components)

Interrupt Capture Module System ID peripheral JTAG UART

Parallel IOs for DIP switch, push buttons, and LEDs

You will be building the following system:

HPS
JTAG to

Avalon Bridge
(hps only)

Interrupt
Capture SysID

Input
PIO

Switches

Input
PIO

Buttons

Output
PIO
Leds

JTAG to
Avalon
Bridge

(fpga only)

On-Chip
Memory

JTAG
UART

Clock
Source

This system will have a processor and a number of embedded peripherals, including

interrupt capturer, PIOs, and JTAG bridges. It also has a sysid register used to identify the

system built. The specific components you will be adding are colored dark in the diagram

above. Note that we’ve already instantiated the HPS component in the previous lab.

Throughout this lab, as we add components, reordering components in the Qsys system view

can make verification easier. The screenshots provided will often be organized to make the

connections more obvious, but components do not have to be ordered that way.

DO NOT DISTRIBUTE

Exercise Manual Designing with an ARM-Based SoC Lab 2

 Copyright © 2015 Altera Corporation
 A-MNL-HW-SoC-EX-15-0-v2

 25

Step 1: Connect the HPS Component
____ 1. Back in the Qsys System Contents window, find the row associated with the HPS

component we just added, it should be at the bottom and named hps_0

____ 2. Export the h2f_reset Reset Output port by double clicking in the Export column and

accepting the default name, hps_0_h2f_reset by pressing the enter key.

By exporting we’re making the signal available outside of the Qsys system. This way we can

connect the signal to pin or to other non-Qsys FPGA logic.

____ 3. Export the f2h_cold_reset_req Reset input port by double clicking in the Export column

and accepting the default name, hps_0_f2h_cold_reset_req by pressing the enter key.

____ 4. Export the f2h_debug_reset_req Reset input port by double clicking in the Export column

and accepting the default name, hps_0_f2h_debug_reset_req by pressing the enter key.

____ 5. Export the f2h_warm_reset_req Reset input port by double clicking in the Export column

and accepting the default name, hps_0_f2h_warm_reset_req by pressing the enter key.

____ 6. Export the f2h_stm_hw_events conduit port by double clicking in the Export column and

accepting the default name, hps_0_stm_hw_events by pressing the enter key.

____ 7. Rename the exported name of the hps_io conduit port of the HPS component by selecting

hps_io in the Export column and typing hps_0_hps_io.

____ 8. Verify that the memory conduit port is exported and named memory. If it is not, export that
interface with the name memory.

These exported connections can be seen below. It needs to appear Exactly as shown.

____ 9. Connect the Clock Input interface, h2f_axi_clock, on the HPS by choosing clk_0 in the

drop-down menu in the Clock column of the HPS instance.

DO NOT DISTRIBUTE

Exercise Manual Designing with an ARM-Based SoC Lab 2

 Copyright © 2015 Altera Corporation
 A-MNL-HW-SoC-EX-15-0-v2

 26

There are many ways to connect the clock. You could have also right clicked on the interface

or used the connections panel.

____ 10. Connect the Clock Input interface, f2h_axi_clock, on the HPS by choosing clk_0 in the

drop-down menu in the Clock column of the HPS instance.

____ 11. Connect the Clock Input interface, h2f_lw_axi_clock, on the HPS by choosing clk_0 in the

drop-down menu in the Clock column of the HPS instance.

The clocks on the HPS should be connected as shown in the following picture.

All errors should be resolved now, there are still some warnings which we will resolve soon.

Step 2: Adding Additional System Components

____ 1. Double-clock the Clock Source component (named clk_0) and ensure that the Clock

Frequency is set to 50 MHz to match the oscillator on the development board.

We’re using the clock source component to bring a clock into the Qsys system and we’ve

already connected it to the FPGA side of the HPS bridges.

____ 2. Ensure that clock frequency is known is checked.

DO NOT DISTRIBUTE

Exercise Manual Designing with an ARM-Based SoC Lab 2

 Copyright © 2015 Altera Corporation
 A-MNL-HW-SoC-EX-15-0-v2

 27

____ 3. Close the Clock Source Parameters window

____ 4. Erase “processor” from the Search box under the IP Catalog tab. If that’s still there.

Now we’re going to add components by browsing in the library.

____ 5. Add a System ID Peripheral to the Qsys system:

a. Double-click the System ID Peripheral in the Basic Functions > Simulation;Debug

and Verification > Debug and Performance folder in the Qsys IP Catalog pick-list

window to open up its configuration window.

b. Enter 0xacd51302 as the 32 bit system ID.

c. Click Finish to add the component to the Qsys system.

The System ID peripheral component contain registers for the ID as well as the Qsys

generation timestamp, it can be used to identify the current system programmed in the

FPGA.

For more information on this component and others, please consult the Embedded

Peripheral IP User Guide found on www.altera.com

____ 6. Connect the System ID component to the Qsys system.

a. Connect the clk input port of the System ID Peripheral to clk_0 by selecting it in the

clock column drop down menu.

b. Rename the System ID component by clicking on its name in the Name column and

typing sysid_qsys.

c. Connect the System ID as shown below using the right click menu or connections panel

DO NOT DISTRIBUTE

Exercise Manual Designing with an ARM-Based SoC Lab 2

 Copyright © 2015 Altera Corporation
 A-MNL-HW-SoC-EX-15-0-v2

 28

Component Port

To

Component Port

sysid_qsys control_slave hps_0 h2f_lw_axi_master

sysid_qsys control_slave fpga_only_master master

Notice we’re connecting the System ID slave interface to the HPS to FPGA lightweight

bridge as accesses to the System ID component is consider a Control/Status access.

d. Set the base address for the System ID Peripheral by double-clicking the address for the

System ID peripheral in the Base address column and typing 0x0001_0000.

e. Click the lock icon next to the base address to lock it.

By locking the address, we won’t allow Qsys to assign any other address to this

component when we tell Qsys to automatically assign base addresses.

____ 7. Move the HPS component to the top of the Qsys system by selecting the hps_0 component

and clicking the “move to top” button, on the Qsys tool bar to the left of the System

Contents window.

When we move the component in the System Contents window, we’re not altering any

connections, only the appearance of the system.

____ 8. Move the System ID component right below the hps_only_master component as shown in

the following screen shot.

DO NOT DISTRIBUTE

Exercise Manual Designing with an ARM-Based SoC Lab 2

 Copyright © 2015 Altera Corporation
 A-MNL-HW-SoC-EX-15-0-v2

 29

Your systems should resemble the following: (This diagram shows components already added to

the system minimized for simplicity)

____ 9. Add the On-Chip RAM component:

a. Double click the On-Chip Memory (RAM or ROM) component from the IP Catalog in

the Basic Functions > On Chip Memory folder to open the configuration window.

b. Set the Data width to 64 bits.

c. Set the Total memory size to 65536 bytes.

d. Ensure Dual-Port Access is disabled.

e. Ensure Initialize memory content is Enabled.

f. Click Finish.

DO NOT DISTRIBUTE

Exercise Manual Designing with an ARM-Based SoC Lab 2

 Copyright © 2015 Altera Corporation
 A-MNL-HW-SoC-EX-15-0-v2

 30

The on-chip ram component can utilize the memory blocks in the FPGA

____ 10. Connect the On-chip RAM component to the Qsys system:

a. Verify that the On-Chip memory component is named onchip_memory2_0.

If not, click the name and change it.

b. Connect the clk1 port of the On-chip RAM to clk_0 by selecting clk_0 in the Clock

column drop down menu.

c. Connect the On-Chip memory slave port s1 as shown below:

DO NOT DISTRIBUTE

Exercise Manual Designing with an ARM-Based SoC Lab 2

 Copyright © 2015 Altera Corporation
 A-MNL-HW-SoC-EX-15-0-v2

 31

Component Port

To

Component Port

onchip_memory2_0 s1 hps_0 h2f_axi_master

onchip_memory2_0 s1 fpga_only_master master

Notice we’re connecting the on-chip RAM to the high throughput HPS to FPGA bridge as

this connection is used for data movement.

d. Ensure the base address for the On-Chip memory is set to 0x0000_0000. If not, double-

click the address for the On-Chip Memory in the address column and type 0x0000_0000.

e. Click the lock icon next to the base address to lock it.

____ 11. Move the On-Chip RAM memory component so that it is located just below the HPS

component.

____ 12. Add Interrupt Capture Module:

a. Double click the Interrupt Capture Module component from Project -> Other folder

to open the configuration window for our custom component.

This component is in the Project folder as this is a custom component.

b. Verify the NUM_INTR is set to 32

c. Click Finish.

The Interrupt Capture Module captures the interrupts coming in and makes the information

available on a memory mapped interface.

____ 13. Connect the Interrupt Capture Module to the Qsys system:

a. Connect the clk port of the Interrupt Capturer to clk_0

b. Connect the avalon_slave_0 interface on the Interrupt Capturer component to the

master port of the fpga_only_master component.

c. Set and lock the base address for the Interrupt Capture Module to 0x0003_0000

DO NOT DISTRIBUTE

Exercise Manual Designing with an ARM-Based SoC Lab 2

 Copyright © 2015 Altera Corporation
 A-MNL-HW-SoC-EX-15-0-v2

 32

____ 14. Add the LED Parallel IO Component

a. In the IP Catalog, find Processors and Peripherals Peripherals PIO and double

click it to instantiate it.

b. Set the Width to 10

c. Set direction to Output

d. Set Output Port Reset Value to 0xF

e. Click Finish

____ 15. Rename the component led_pio by single click on the name or using the right click menu

____ 16. Connect the led_pio

a. Set the led_pio clk input to clk_0

b. Connect the led_pio s1 slave port to fpga_only_master.master

c. Connect the led_pio s1 slave port to hps_0.h2f_lw_axi_master

d. Set the address of the led_pio s1 port to 0x10040 and lock it

e. Export the external_connection Conduit interface as the default

led_pio_external_connection

f. Move the led_pio component to be just below button_pio

____ 17. Ensure these components clocks are connected as described below:

hps_only_master clk_0

jtag_uart clk_0

button_pio clk_0

dipsw_pio clk_0

led_pio clk_0

DO NOT DISTRIBUTE

Exercise Manual Designing with an ARM-Based SoC Lab 2

 Copyright © 2015 Altera Corporation
 A-MNL-HW-SoC-EX-15-0-v2

 33

____ 18. Connect the remaining components as shown:

Component Port

To

Component Port

hps_only_master master hps_0 f2h_axi_ slave

jtag_uart avalon_jtag_slave hps_0 h2f_lw_axi_ master

button_pio s1 hps_0 h2f_lw_axi_master

dipsw_pio s1 hps_0 h2f_lw_axi_master

led_pio s1 hps_0 h2f_lw_axi_master

____ 19. Connect all the reset interfaces in the design by selecting Create Global Reset Network

from the System menu.

This will connect OR together all of the reset outputs in the Qsys system and connect them to

all reset inputs in the Qsys system

____ 20. Auto-assign the base addresses for all the components so that there are no overlapping

addresses by selecting Assign Base Addresses in the System menu.

This should have no effect in our case since we’ve manually assigned and locked all

addresses.

DO NOT DISTRIBUTE

Exercise Manual Designing with an ARM-Based SoC Lab 2

 Copyright © 2015 Altera Corporation
 A-MNL-HW-SoC-EX-15-0-v2

 34

Step 3: Establish IRQ Priorities

____ 1. In the IRQ Column (You’ll need to scroll to the right), connect the IRQ line on the jtag_uart

component to the HPS f2h_irq0 and Interrupt Capturer in the IRQ column.

Doing this allows the components to interrupt processor 0 in the HPS as well as sending a

signal to the interrupt capturer custom component so FPGA Only Master has access to the

information.

The IRQ assignments should match the screen shot below. Ensure the jtag_uart gets priority

0(highest priority).

DO NOT DISTRIBUTE

Exercise Manual Designing with an ARM-Based SoC Lab 2

 Copyright © 2015 Altera Corporation
 A-MNL-HW-SoC-EX-15-0-v2

 35

Step 4: Verify Your System
____ 1. Verify that you connections are correct by checking against the following table:

Your Qsys System Contents page should now be connected as shown in the following table.

The order of the components doesn’t matter, just their connectivity. Ensure the

led_pio_external_connection, dipsw_pio_external_connection and

button_pio_external_connection conduits are exported and named properly to ensure

correct mapping in the Quartus II software.

It’s easiest to verify by right click on these ports and choose Connections.

Component Port Connections

clk_0

clk_in exported as clk
clk_in_reset exported as reset
clk All Components
clk_reset All Components except the hps0 exported ones

dipsw_pio
conduit_in Exported as dipsw_pio_conduit_in
conduit_out Exported as dipsw_pio_conduit_out

button_pio
conduit_in Export as button_pio_conduit_in
conduit_out Exported as button_pio_conduit_out

led_pio external_connection exported as led_pio_external_connection

HPS

h2f_axi_master onchip_memory2_0.s1

h2f_lw_axi_master

jtag_uart.avalon_jtag_slave
sysid_qsys.control_slave
button_pio.s1
dipsw_pio.s1
led_pio.s1

f2h_axi_slave hps_only_master.master

fpga_only_master master

jtag_uart.avalon_jtag_slave
intr_capture_0.avalon_slave_0
sysid_qsys.control_slave
button_pio.s1
led_pio.s1
dipsw_pio.s1
onchip_memory2_0.s1

 hps_debug_reset_pio.s1
 hps_cold_reset_pio.s1
 hps_warm_reset_pio.s1

DO NOT DISTRIBUTE

Exercise Manual Designing with an ARM-Based SoC Lab 2

 Copyright © 2015 Altera Corporation
 A-MNL-HW-SoC-EX-15-0-v2

 36

____ 2. Ensure the Device Family tab exists, if not enable it from the Qsys view menu.

____ 3. Verify that the Device Family and Device and other project settings match the screen shot.

Qsys should have pulled this information from your Quartus II .qsf file. (If it has not done

so, please consult your instructor.)

The Device Family tab communicate to Qsys which device you’re generating the system for.

____ 4. In the Message box, ensure there are no more remaining errors and warnings. If so, you must

fix them before proceeding.

DO NOT DISTRIBUTE

Exercise Manual Designing with an ARM-Based SoC Lab 2

 Copyright © 2015 Altera Corporation
 A-MNL-HW-SoC-EX-15-0-v2

 37

Step 5: Generate the Qsys System

____ 1. Save your Qsys system by selecting Save from the File menu.

____ 2. Click the Generate HDL… option under the Generate menu.

____ 3. Uncheck Create block symbol file in the Generate dialog box if it’s checked.

____ 4. Leave everything else to their defaults and press the Generate button.

This will take a few minutes.

Qsys will now create the parameterized hardware system. Qsys can generate either VHDL or

Verilog model of the system although we’re using Verilog today.

DO NOT DISTRIBUTE

Exercise Manual Designing with an ARM-Based SoC Lab 2

 Copyright © 2015 Altera Corporation
 A-MNL-HW-SoC-EX-15-0-v2

 38

____ 5. After the Qsys software has finished generating the system, close Qsys and return to the

Quartus II software.

____ 6. Click OK if you see a window telling you you’ve created an IP Variation in the .qsys file.

____ 7. From the Project menu select Add/Remove Files in Project.

____ 8. Browse to the <project_folder>/Lab/soc_system/synthesis folder by pressing the

button next to the File Name field in the Quartus II Settings page.

____ 9. Select the soc_system.qip file.

The .qip file is an index file created by Qsys to configure the Quartus II project with HPS pin

outs and also loads the variety of source files needed to compile the Qsys system without

having to add them all individually.

____ 10. Click Open.

____ 11. In the Quartus II Settings page click Add to actually add the file to the project.

If you forget to do this, the file will not actually be part of the project.

DO NOT DISTRIBUTE

Exercise Manual Designing with an ARM-Based SoC Lab 2

 Copyright © 2015 Altera Corporation
 A-MNL-HW-SoC-EX-15-0-v2

 39

Note: The soc_system_timing.sdc file used for timing analysis purposes and few other

verilog source files has already been added for you.

____ 12. Click OK to close the Settings page.

Step 6: Run the Pin Assignments Script and Compile the Design

Signals entering or exiting the FPGA device need to be assigned physical locations and other pin

properties on the device I/O. Since the HPS is a hard core IP, pin assignments, other than

SDRAM memory pins, do not need to be specified. The pin assignments were made when the

HPS was instantiated, i.e. when the peripheral IO muxing options was set.

In the following steps, you will source a Tcl script created by the Qsys tool to set up a number of

I/O assignments for the SDRAM device. A synthesized netlist is required in order to run this

script.

____ 1. Synthesize the design by selecting Processing > Start > Start Analysis & Synthesis.

____ 2. Click OK when synthesis is complete.

This may take 5 minutes. Make sure there weren’t any errors. Ignore any warnings.

____ 3. Select Tools > Tcl Scripts…

____ 4. Select the hps_sdram_p0_pin_assignments.tcl file as seen below in the soc_system >

synthesis > submodules folder.

DO NOT DISTRIBUTE

Exercise Manual Designing with an ARM-Based SoC Lab 2

 Copyright © 2015 Altera Corporation
 A-MNL-HW-SoC-EX-15-0-v2

 40

____ 5. Click Run.

This Tcl script creates I/O assignments for the DDR3 pins. If you like, open the Tcl scripts

and examine them. It takes approximately 30 seconds to run.

____ 6. After the Tcl script successfully executes, click OK.

____ 7. Close the Tcl scripts window.

____ 8. Start compilation in the Quartus II software by selecting Processing > Start Compilation.

This compile takes approximately 10 minutes.

____ 9. When compilation completes, click OK.

DO NOT DISTRIBUTE

Exercise Manual Designing with an ARM-Based SoC Lab 2

 Copyright © 2015 Altera Corporation
 A-MNL-HW-SoC-EX-15-0-v2

 41

Step 7: Examine Output Files

____ 1. Using Windows Explorer, navigate to <project_folder>\Labs

The soc_system.sof file generated will be used in later labs to program the FPGA.

Using Windows Explorer, navigate to the software handoff file directory:

<project_folder>\Labs\hps_isw_handoff\soc_system_hps_0

Here you’ll find the handoff files generated by the tools that software will need.

Exercise Summary

• Instantiated additional components and connect them to the HPS

• Generated the Qsys System

• Examined the output files generated by the process

END OF EXERCISE 2

DO NOT DISTRIBUTE

DO NOT DISTRIBUTE

Exercise Manual Designing with an ARM-Based SoC Lab 3

 Copyright © 2015 Altera Corporation
 A-MNL-HW-SoC-EX-15-0-v2

 43

Exercise 3A

Exercise the FPGA
Using the System Console Tool

DO NOT DISTRIBUTE

Exercise Manual Designing with an ARM-Based SoC Lab 3

 Copyright © 2015 Altera Corporation
 A-MNL-HW-SoC-EX-15-0-v2

 44

Objectives:

• Program the board using System Console

• Use System Console to verify JTAG signal integrity, system clock and reset functionality

• Perform simple master read and write operations from System Console (switches and LED PIO)

• See that status of switches button and LEDs using the Dashboard

Introduction:

An ARM processor located inside the SoC behaves the same as any other ARM processor. From the

FPGA designer’s point of view, FPGA is independent of the processor.

This lab is intended to prove that your IP (in this case the LED and switch PIO IP) is connected correctly

and responds to Avalon™ bus transactions.

In this exercise, you will use the System Console to control the system. You can communicate with the

Avalon slave interface from System Console and act as the master to the system through the JTAG- to-

Avalon Master Bridge (FPGA) that is part of your system. This block is shaded on the bottom row of the

diagram below. You will then use the System Console to check the system reset and clock signals. After

that, you will perform simple master reads and writes from the System Console. Finally, you will use the

Dashboard GUI to control the system from the System Console.

While the HPS core has been instantiated in the Qsys system, it’s not running because we haven’t

provided any software.

HPS
JTAG to

Avalon Bridge
(HPS)

Interrupt
Capture SysID

Input
PIO

Switches

Input
PIO

Buttons

Output
PIO
Leds

JTAG to
Avalon Bridge

(FPGA)

On-Chip
Memory

JTAG
UART

Clock
Source

DO NOT DISTRIBUTE

Exercise Manual Designing with an ARM-Based SoC Lab 3

 Copyright © 2015 Altera Corporation
 A-MNL-HW-SoC-EX-15-0-v2

 45

Step 1: Connect the Development Board
____ 1. Take the DE-1 development board out of the box and connect the power supply

____ 2. Connect the USB to Ethernet dongle into the laptop. No ethernet cable is needed since this is
only used for the ARM DS-5 tool licensing.

____ 3. Connect the USB cable between the host PC and the USB-Blaster™ II port on the board.

____ 4. The MSEL DIP switches on the back of the board should already be set as the following.
Verify the settings.

SW10 (MSEL0..4) ON-OFF-ON-OFF-ON-OFF (ON is 0)

____ 5. If the the Micro SD card is inserted in the slot J11 then remove it.

____ 6. Turn on the development board using the power switch.

Step 2: Launch System Console and Program the FPGA
System Console is a tool that allows low level access to the memory mapped peripherals in

the system over JTAG. We will be using this tool to perform low level board bring up and

testing.

____ 1. In the Quartus II software, make sure the soc_system project is open.

____ 2. In the Qsys tool, open the soc_system.qsys file if it’s not already open

We will use this to verify the addresses.

____ 3. Launch the System Console tool by selecting System Console from the Qsys or Quartus

Tools menu.

____ 4. Verify that System Console can see the connections in the JTAG chain in the System

Console System Explorer window.

If you don’t see the connections and device shown in the picture below, go to the System

Console Tools menu, and select Refresh Connections. If this still doesn’t work, let the

instructor know.

DO NOT DISTRIBUTE

Exercise Manual Designing with an ARM-Based SoC Lab 3

 Copyright © 2015 Altera Corporation
 A-MNL-HW-SoC-EX-15-0-v2

 46

____ 5. View the device services available by typing get_service_paths device in the Tcl Console.

System console will respond with a list of the paths to all of the devices found in the chain.

In our case we have only the one as shown below:

____ 6. Program the board in the System Console tool using the following steps:

a. set d_path [get_service_paths device]

This command sets the device service path to d_path so we can easily access it. “set” is a

Tcl command assigns values to a variable.

b. device_download_sof $d_path soc_system.sof

This command programs the device from the previous step with the soc_system.sof file.

The device service is unusual in that it doesn’t require being opened or closed before and

after use.

It is also possible to program the device by right clicking on the device, selecting

Program device submenu and selecting soc_system.sof

DO NOT DISTRIBUTE

Exercise Manual Designing with an ARM-Based SoC Lab 3

 Copyright © 2015 Altera Corporation
 A-MNL-HW-SoC-EX-15-0-v2

 47

____ 7. Confirm that System Console has programmed the FPGA and linked to the project by

verifying that the following message appears in the messages window.

Expand the devices folder in the System Explorer window and then the subfolders to see all

of the components that have been connected to the JTAG to Avalon components in the Qsys

system and the now linked soc_system.sof file. Notice all of the compoenent names match

those we specified in Qsys, this is possible because we opened System Console from our open

Quartus project and all of the information is automatically transferred to the System Console

session.

If you do not see this, please consult your instructor.

DO NOT DISTRIBUTE

Exercise Manual Designing with an ARM-Based SoC Lab 3

 Copyright © 2015 Altera Corporation
 A-MNL-HW-SoC-EX-15-0-v2

 48

Step 3: Verify Clock and Reset From the System Console Tool

____ 1. View the JTAG debug services available by typing get_service_paths jtag_debug in the Tcl

Console pane

System Console responds by listing the two possible devices available to perform jtag_debug

tasks. These are the JTAG to Avalon Bridges that were added and connected to the HPS

component (hps_only_master) and the rest of the FPGA components in the Qsys system

(fpga_only_master).

____ 2. Create a variable that points to the fpga_only_master JTAG to Avalon bridge component by

typing set jd_path [lindex [get_service_paths jtag_debug] 0]

As we saw in the previous step there are two JTAG debug paths available, so we can access each one

independantly by creating a variable to point to them, as we did with the device service earlier. In

this case we will create a variable called jd_path to point to the fpga_only_master which was the first

in the list. For this JTAG debug purposes we can use either JTAG to Avalon master.

____ 3. Verify that the signal integrity of the JTAG chain by passing a test pattern through it and

making sure you get the same values back from the JTAG chain. Type:

jtag_debug_loop $jd_path [list 1 2 3 4 5 6 7 8 9 10] in the System Console Tcl Console

window. This is a useful sanity check to make sure the JTAG chain is passing through the

bits expected and not corrupting them. This can be useful for large JTAG chains.

____ 4. Verify that the clock is toggling by entering the following commands in the System Console

Tcl Console window.

a. jtag_debug_sense_clock $jd_path

This command simply senses if the clock has ever toggled, returning a 1 if it has.

DO NOT DISTRIBUTE

Exercise Manual Designing with an ARM-Based SoC Lab 3

 Copyright © 2015 Altera Corporation
 A-MNL-HW-SoC-EX-15-0-v2

 49

b. jtag_debug_sample_clock $jd_path

This command asynchronously samples the clock signals. You will likely have to run this

command several times to witness a change.

 Note: Pressing the up arrow will bring up the previous System Console command and tab will

bring up a list of commands that can be entered. When tab completing the command, use the up

and down arrows to select the command and then press enter to make the selection.

____ 5. Verify that the reset signal has been released by typing jtag_debug_sample_reset $jd_path

command in the Tcl Console window to sample the current value of the reset signal.

The reset signal is active low so we should expect the result of the sampling to be 1 denoting

the reset is released. We could also issue a reset to all the components whose reset line is

connected to the JTAG to Avalon Master component in Qsys by typing

jtag_debug_reset_system $jd_path

DO NOT DISTRIBUTE

Exercise Manual Designing with an ARM-Based SoC Lab 3

 Copyright © 2015 Altera Corporation
 A-MNL-HW-SoC-EX-15-0-v2

 50

Step 4: Perform Master Reads and Writes to Peripherals in the FPGA

____ 1. View the Avalon master services available in the FPGA by entering the following command

get_service_paths master

This command returns all the possible masters on the JTAG chain. Notice that again the

paths available are the hps_only_master and fpga_only_master JTAG to Avalon bridges.

____ 2. Create a variable that points to the fpga_only_master JTAG to Avalon bridge component by

typing set m_path [lindex [get_service_paths master] 0]

This command sets a variable, m_path, to the master service path. We use the index 0 here because

you can see from the master services listed in the previous step that the FPGA only master is the first

one listed and therefore index 0.

____ 3. Claim the master service to allow exclusive access to the master device by typing

set c_path [claim_service master $m_path “”] in the Tcl console window.

____ 4. Change the state of the four FPGA LEDs using the master_write command as shown below:

a. master_write_32 $c_path 0x10040 0x3ff will turn on all the LEDs.

b. master_write_32 $c_path 0x10040 0x0 will turn off all the LEDs.

c. master_write_32 $c_path 0x10040 0xc will turn on LEDs 2 & 3.

d. master_write_32 $c_path 0x10040 0xa will turn on LEDs 0 & 2.

Remember that the led_pio is located at address 0x10040 in the Qsys system and are “on”

when driven with a ‘1’. Feel free to play with different values.

Because the led_pio component is 10 bits wide, if you used master_write_8 or

master_write_memory you’ll need to write to multiple words.

DO NOT DISTRIBUTE

Exercise Manual Designing with an ARM-Based SoC Lab 3

 Copyright © 2015 Altera Corporation
 A-MNL-HW-SoC-EX-15-0-v2

 51

____ 5. Change the dip switch settings of the FPGA side of SW0-9 and read their value with the

master_read_32 command of the dip_sw_pio located at address 0x10080 using the

command master_read_32 $c_path 0x10080 1, you may also try out various different read

widths and see their effects.

Notice that read display size matches the command size.

____ 6. Hold down one or more of the buttons and read the button_pio component at address

0x100C0 with a master_read command, master_read_32 $c_path 0x100C0 1

Note: These signal are active low. And feel free to try out different combinations.

____ 7. Close the master service by typing close_service master $c_path

Step 5: Run the System from the System Console Dashboard GUI
____ 1. From the Quartus II software File menu, open SoC_HW_SysCon.tcl found in the project

directory and examine it.

You may need to change the file type to script files in the dialog box. The script contain the

dashboard commands that sets up the dashboard GUI and function calls that respond to

button pushes..

____ 2. In the System Console tool, run the SoC_HW_SysCon.tcl by typing

source SoC_HW_SysCon.tcl command in the Tcl console window

DO NOT DISTRIBUTE

Exercise Manual Designing with an ARM-Based SoC Lab 3

 Copyright © 2015 Altera Corporation
 A-MNL-HW-SoC-EX-15-0-v2

 52

Note: Remember that Tcl is case sensitive. You can also run scripts from the File menu.

____ 3. Push the LED Toggle buttons on the Dashboard and confirm that the corresponding FPGA

LED changes state on the development board.

Everytime you press the buttons, the script sends a write command to the LED PIO register

and also updates the display in System Console.

____ 4. Flip some of the 10 switches, and push the update button. Verify that the corresponding

Switch Setting LED changes on the dashboard window.

Everytime UPDATE is pressed, the script performs a master read on the switch PIO

component and updates the display.

This script has many more features if you’re curious what it does, please ask the instructor

____ 5. Exit System Console

Exercise Summary

• Performed low level verification of the jtag chain and programmed the FPGA

• Performed low level verification of the system clock and reset signals

• Performed master read and write commands using the System Console

• Ran the system hardware from the Dashboard GUI and observed the results

END OF EXERCISE 3A

DO NOT DISTRIBUTE

Exercise Manual Designing with an ARM-Based SoC Lab 3

 Copyright © 2015 Altera Corporation
 A-MNL-HW-SoC-EX-15-0-v2

 53

Exercise 3B

Debugging Hardware and
Software Using

SignalTap II Logic Analyzer
and ARM DS-5 Development

Studio

DO NOT DISTRIBUTE

Exercise Manual Designing with an ARM-Based SoC Lab 3

 Copyright © 2015 Altera Corporation
 A-MNL-HW-SoC-EX-15-0-v2

 54

Objectives:

• Use the DS-5 tool to write from the HPS to the LED PIO and cause the SignalTap™ II logic

analyzer to trigger on that transaction

• Use a break point in the software running on the HPS to trigger the SignalTap II logic

analyzer in the FPGA

Introduction

In lab 3A, we demonstrated that instantiating an HPS component in a Qsys system has no effect

on the normal debug process of an FPGA design. The HPS component had no effect on the

system because the there was no software running and the bridges to/from the FPGA weren’t

enabled.

In order to prove the connectivity between the FPGA design and the HPS component, this lab

will show you how to access the HPS from the FPGA design a number of different ways. The

HPS to FPGA bridge connectivity will be proven by initiating a register write to the LED PIO

device located in the FPGA and triggering on that transaction using the SignalTap II logic

analyzer. The SignalTap II logic analyzer can also be triggered from a break point in software

on the HPS.

DO NOT DISTRIBUTE

Exercise Manual Designing with an ARM-Based SoC Lab 3

 Copyright © 2015 Altera Corporation
 A-MNL-HW-SoC-EX-15-0-v2

 55

Step 1: Launch the Software Project

We need to initiate the bridges on the HPS component and the easiest ways to do that is to

use the DS-5 tool to load the preloader software onto the HPS component and get the HPS

component to initialize the bridges for us.

____ 1. If you powered off your board, reprogram the FPGA with the Quartus II programmer tool
using the .sof file from the project directory.

____ 2. In the Windows Explorer, navigate to the C:\altera\15.0\embedded\ directory and double-
click the file Embedded_Command_Shell.bat to run it.

This is a Cygwin shell that allows you to perform many SoC related tasks.

____ 3. Type jtagconfig at the command prompt to scan and see the devices on the JTAG chain.

This will ensure the HPS and the FPGA can be seen in the JTAG chain.

____ 4. Open the Eclipse for DS-5 software by typing eclipse& in the Embedded Command Shell.
Launching DS-5 from the shell bring in various SoC related settings.

____ 5. When the Workspace Launcher window appears, CAREFULLY select the workspace as

C:\altera_trn\Designing_with_ARM_SoC (Not Software)

DO NOT DISTRIBUTE

Exercise Manual Designing with an ARM-Based SoC Lab 3

 Copyright © 2015 Altera Corporation
 A-MNL-HW-SoC-EX-15-0-v2

 56

Make sure you’re using the Designing_with_ARM_SoC workspace and NOT

Developing_Software_For_ARM_SoC

____ 6. Click the OK button to accept the workspace.

Make sure the Crosstrigger project is loaded into the workspace

____ 7. Look over the software if you wish, in the Crosstrigger project, the main source code is

located in hwlib.c (open that by double clicking on it within the Crosstrigger Project)

This is a very simple program, and most of the action is performed with in the test_bridge

function where it will first initialize the FPGA to HPS, the HPS to FPGA, and the lightweight

HPS to FPGA bridges. Then the software will run a gray code pattern on the LEDs by

writing across the lightweight HPS to FPGA bridge to the LED PIO component.

____ 8. Compile the program by right clicking the Crosstrigger project and choose Build Project

DO NOT DISTRIBUTE

Exercise Manual Designing with an ARM-Based SoC Lab 3

 Copyright © 2015 Altera Corporation
 A-MNL-HW-SoC-EX-15-0-v2

 57

____ 9. Verify that the project has been successfully compiled by looking in the Console window.

Make sure the build finished without any errors and that the hwlib.axf executable linkable

file is generated correctly. Don’t worry about any errors in the Problems pane or the source

code, these errors are caused by the Eclipse GUI indexer not having a chance to run on all

the files that’s copied into the directory during build..

____ 10. From the Run menu select Debug Configurations…

The debug configuration is a way to create a launcher script that specifies a variety of setup

scripts to speed up the connecting to the HPS and performing basic debug functions.

____ 11. Make sure the Crosstrigger configuration launcher script is selected in the list on the left and
the Connection tab is selected.

____ 12. In the Select target window, choose Debug Cortex-A9_0 under Altera Cyclone V SoC
(Dual Core) Bare Meta Debug (see diagram below)

This specification allows us to run software on the ARM processor on the board.

____ 13. For Target Connection, choose USB-Blaster from the pulldown menu

DO NOT DISTRIBUTE

Exercise Manual Designing with an ARM-Based SoC Lab 3

 Copyright © 2015 Altera Corporation
 A-MNL-HW-SoC-EX-15-0-v2

 58

This step tells the configuration which debug cable to use. In addition to the ARM debug

tools such as DSTREAM, DS5 also recognizes Altera’s USB-Blaster as a valid JTAG debug

cable to gain access to the Cortex A9 CPU.

____ 14. For Connection -> Bare Metal Debug, click Browse…, and select DE-SoC on localhost

This steps looks for the valid components across the USB-Blaster II download cable.

____ 15. Click the Edit button to modify the DSTL Options.

____ 16. On the DSTL Configuration Editor window, click the Cross Trigger tab.

____ 17. Click Enable HPS -> FPGA Cross Trigger to enable it.

____ 18. Click Assume Cross Triggers can be accessed to enable it.

DO NOT DISTRIBUTE

Exercise Manual Designing with an ARM-Based SoC Lab 3

 Copyright © 2015 Altera Corporation
 A-MNL-HW-SoC-EX-15-0-v2

 59

This setting is required in order to enable the cross-triggering from the HPS component to

the FPGA domain. This causes a trigger to the FGPA in the event of a break in the software

code running on the HPS.

____ 19. Press OK to close the DSTL Configuration Editor window.

____ 20. Click Debug to start the debug process

____ 21. Click Yes if prompted to switch to the debug perspective.

The start-up process will take a second and it will stop at main (line 111 of file hwlib.c)

If you encounter errors, please see the troubleshoot guide at the end of this document.

____ 22. Press the play button, , in the DS-5 for Eclipse GUI to continue running code until it stops

at a breakpoint on line 51. This breakpoint has already been set for you.

DO NOT DISTRIBUTE

Exercise Manual Designing with an ARM-Based SoC Lab 3

 Copyright © 2015 Altera Corporation
 A-MNL-HW-SoC-EX-15-0-v2

 60

If you look at the the App Console located in the lower right hand corner of the DS-5 for

Eclipse window you can see that the bridges between the HPS and the FPGA have been

initiated successfully. It is now possible to communicate between the HPS and the FPGA

using the Avalon bus.

____ 23. In the Qsys tool, open it if it’s been closed, click on the f2h_axi_slave port of the hps_0

component to highlight it.

You can see that the hps_only_master connects to the HPS component through the FPGA to

HPS bridge. This connection allows access the to the HPS registers from System Console

through the JTAG to Avalon Master Bridge.

____ 24. Click on the h2f_axi_master and the h2f_lw_axi_master, these are the connections that will

allow the HPS to control FPGA component. In this lab, the softwrae will mostly exercise the

lightweight bridge to write to the LED PIO component.

DO NOT DISTRIBUTE

Exercise Manual Designing with an ARM-Based SoC Lab 3

 Copyright © 2015 Altera Corporation
 A-MNL-HW-SoC-EX-15-0-v2

 61

Step 2: Have HPS trigger a SignalTap II logic analyzer capture of HW

state

____ 1. Open the SignalTap II logic analyzer file using the following steps

• In the Quartus II software, select File-> Open..
• Select SignalTap II Logic Analyzer Files (.stp) in the “Files of type:” drop down menu.
• Select the stp1.stp file from the <project_folder>\Labs directory.
• Click Open.

SignalTap II is Altera’s Embedded Logic Analyzer used to debug FPGA logic in real time.

For more information, consult the Quartus II Handbook or view the free SignalTap II online

training available at http://www.altera.com/training

____ 2. Make sure the Setup tab is in the foreground to see how the triggers have been configured.

The SignalTap II logic analyzer file taps signals of the Avalon Memory-Mapped interface

that is connected to the LED PIO block. The signal write_n rises when a transaction ends

and the SignalTap II file is setup to trigger on that event.

The SignalTap II logic analyzer also has the ability to trigger on an event from the HPS. The

“trigger in” option in the SignalTap II Signal Configuration window, is currently set to HPS

trigger out. Note that this input is currently set to “don’t care”. That will change in a later

section about FPGA to HPS cross triggering.

DO NOT DISTRIBUTE

Exercise Manual Designing with an ARM-Based SoC Lab 3

 Copyright © 2015 Altera Corporation
 A-MNL-HW-SoC-EX-15-0-v2

 62

____ 3. Ensure that the 5CS device is selected under the Device: drop down menu.

SignalTap works with logic in the FPGA and not the HPS component directly.

____ 4. Set the lock mode of the SignalTap II analyzer to “Allow trigger condition changes only”.

This option is in the middle of the window and will prevent us from making changes to the

setup that will require a Quartus recompile.

____ 5. Arm the SignalTap II logic analyzer by clicking the Run Analysis button .

____ 6. In the DS-5 tool, go to the Registers tab and scroll to the bottom.

If you do not see a registers tab, you can enable it from the DS-5 Windows menu Show

View Registers

____ 7. Expand the Peripherals folder and find the LED PIO

____ 8. Expand the altera_avalon_led_pio_s1 register set by clicking on the “+” symbol next to it.

____ 9. Change the value of the DATA register to 0xA by clicking in the Value column, editing the

value and hitting enter.

The LEDR3 and LEDR1 on the board should turn on and SignalTap II should trigger.

DO NOT DISTRIBUTE

Exercise Manual Designing with an ARM-Based SoC Lab 3

 Copyright © 2015 Altera Corporation
 A-MNL-HW-SoC-EX-15-0-v2

 63

____ 10. Examine the waveform in the SignalTap II logic analyzer Data tab

This shows the Avalon MM write transaction from the HPS to the LED PIO in the FPGA.

____ 11. Minimize the led_pio_s1 register in the register view of the DS5 tools.

____ 12. Click the Setup tab in the SignalTap II window .

____ 13. Change the Trigger Conditions on the write_n signal to be don’t care by right-clicking the

Trigger conditions column of the write_n signal.

____ 14. In the Signal Configuration pane of the setup tab, scroll down to just above the Trigger out

section change the HPS Trigger out to “Rising Edge” using the drop down menu.

DO NOT DISTRIBUTE

Exercise Manual Designing with an ARM-Based SoC Lab 3

 Copyright © 2015 Altera Corporation
 A-MNL-HW-SoC-EX-15-0-v2

 64

Now instead of triggering on the write signal, SignalTap will trigger when the Cortex-A9

processor stops. Had we left the write_n trigger condition in, then we would’ve gotten a 2

staged trigger condition where the write must happen after the Processor break.

____ 25. Arm SignalTap II logic analyzer by pushing the Run Analysis button .

____ 26. Press the play button in the DS-5 tool to continue to the next break point (line 70).

SignalTap should trigger

____ 27. Examine the waveform in the Data tab in the SignalTap II logic analyzer tool.

Notice all signals are stable at the trigger (Time 0), this is because this trigger was caused by

a software breakpoint and not any hardware trigger conditions.

____ 28. Examine the LEDs on the board and write down state of each LED.

The value in SignalTap may not agree with the value shown in the System Console because at
the time of SignalTap capture, the LEDs wasn’t written to yet.

LEDR[9..0] ___

____ 29. Arm SignalTap II logic analyzer again.

____ 30. Press the play button again in the DS-5 tool to repeat the loop and stop at the breakpoint

again. SignalTap tool should trigger again.

____ 31. Examine the waveform again.

DO NOT DISTRIBUTE

Exercise Manual Designing with an ARM-Based SoC Lab 3

 Copyright © 2015 Altera Corporation
 A-MNL-HW-SoC-EX-15-0-v2

 65

Now SignalTap out_port should match the previous LED value

____ 32. What is the state of the LEDs now on the Board?

__

____ 33. Repeat Arming the SignalTap trigger and runinng the software a few more times to see more

gray code values.

____ 34. Remove the breakpoint on line 70 by double clicking the left most column where the red dot

is indicating the breakpoint.

____ 35. Press the play button to finish running the software.

You should see “RESULT: All tests successful in the App Console”

____ 36. Disconnect the DS5 from the Target. By pressing in debug controls.

____ 37. Exit from DS-5, Embedded Command Shell, Qsys, SignalTap II, and Quartus tools.

In this section, you were able to use the trigger output from the HPS as a trigger input to capture
exactly the transaction of interest in SignalTap II logic analyzer.

Exercise Summary

• Triggered SignalTap II analyzer from a transaction generated by the HPS using the DS-5 tool

• Triggered the SignalTap II logic analyzer using a break point set in software.

END OF EXERCISE 3B

DO NOT DISTRIBUTE

	Designing_with_ARM_SoC_Exercises_15_0_v2.pdf
	Designing with the ARM-Based SoC
	Exercise Manual
	 Performed low level verification of the jtag chain and programmed the FPGA
	 Performed low level verification of the system clock and reset signals
	 Performed master read and write commands using the System Console
	 Ran the system hardware from the Dashboard GUI and observed the results
	This is a Cygwin shell that allows you to perform many SoC related tasks.
	 Triggered SignalTap II analyzer from a transaction generated by the HPS using the DS-5 tool
	 Triggered the SignalTap II logic analyzer using a break point set in software.

